A General Implicit Artificial Boundary Scheme for Chimera Methods

Dr. Marshall Galbraith
Massachusetts Institute of Technology
Department of Aeronautics and Astronautics
galbramc@mit.edu

Dr. Robert Knapke
University of Cincinnati
School of Aerospace Systems
knapkerd@email.uc.edu

Dr. Paul D. Orkwis
University of Cincinnati
School of Aerospace Systems
Paul.Orkwis@uc.edu

Dr. John Benek
Air Force Research Laboratory
Computational Science Branch Center of Excellence
John.Benek@wpafb.af.mil

12th Overset Symposium, 9 Oct 2014
Motivation

- Chimera Overset Grid Method
 - Complex Geometries
 - “Hot swap” Geometric Features
 - Moving Grids with Relative Motion
 - Store Separation
 - Rotorcraft

- Explicit Artificial Boundaries
 - Solve Decoupled System
 - Limits CFL Number with Increasing Number of Processor

- Implicit Artificial Boundaries
 - Significant Increased Parallel Performance
 - It’s easier than it sounds
Outline

• Discretization Assumptions
• Explicit/Implicit Chimera
• Sparse Iterative Solvers
 – Preconditioners
• Distributed Memory Parallelism
• Discontinuous Galerkin Method
• Inviscid/Viscous Flow Examples
• Conclusion and Future Work
Outline

• Discretization Assumptions
• Explicit/Implicit Chimera
• Sparse Iterative Solvers
 – Preconditioners
• Distributed Memory Parallelism
• Discontinuous Galerkin Method
• Inviscid/Viscous Flow Examples
• Conclusion and Future Work
Discretization Assumptions

- Euler/Navier-Stokes Equations in Conservation Form

\[\nabla \cdot \vec{F}(Q) = 0 \]

- Discrete Form
 - Finite Difference
 - Finite Volume
 - Finite Element

- Newton's Method

\[\frac{\partial R(Q)}{\partial Q} \Delta Q = -R(Q) \]

\[A \Delta Q = -R(Q) \]

- Chimera Interpolation Operator
 - Linear Operator (don’t think 2nd order accuracy)
 - Polynomial Basis Functions
 - Radial Basis Functions
 - Trigonometric Basis Functions
 - etc.

\[I_h(Q) = \sum Q_i \phi_i \]

\[\frac{\partial I_h(Q)}{\partial Q} \Delta Q = I_h(\Delta Q) = \sum \Delta Q_i \phi_i \]
Explicit/Implicit Artificial Boundaries

Newton’s Method
\[A \Delta Q = R \]

\[R^1(Q^1, I_h(Q^2)) = 0 \quad R^2(Q^2, I_h(Q^1)) = 0 \]

Explicit Artificial Boundary
\[
\begin{bmatrix}
 A^1 & 0 \\
 0 & A^2
\end{bmatrix}
\begin{bmatrix}
 \Delta Q^1 \\
 \Delta Q^2
\end{bmatrix} =
\begin{bmatrix}
 R^1(Q^1, I_h(Q^2)) \\
 R^2(Q^2, I_h(Q^1))
\end{bmatrix}
\]

\[A^1 = \frac{\partial R^1}{\partial Q^1} \quad A^2 = \frac{\partial R^2}{\partial Q^2} \]

Solve Decoupled System
\[A^1 \Delta Q^1 = R^1(Q^1, I_h(Q^2)) \]
\[A^2 \Delta Q^2 = R^2(Q^2, I_h(Q^1)) \]

Implicit Artificial Boundary
\[
\begin{bmatrix}
 A^1 & C^1 \\
 C^2 & A^2
\end{bmatrix}
\begin{bmatrix}
 \Delta Q^1 \\
 \Delta Q^2
\end{bmatrix} =
\begin{bmatrix}
 R^1(Q^1, I_h(Q^2)) \\
 R^2(Q^2, I_h(Q^1))
\end{bmatrix}
\]

\[C^1 = \frac{\partial R^1}{\partial Q^2} \quad C^2 = \frac{\partial R^2}{\partial Q^1} \]

- **Unstructured A Matrix**
 - Explicitly add C_i Matrices

- **Structured A^i Matrix**
 - Tri-, Penta-, Hepta-diagonal

- **Sparse Iterative Solver**
 - No Explicit C_i Matrices
Sparse Iterative Solvers

- Iterative methods for sparse linear systems

- Restarted GMRES
 - Simple Fortran Code Available
 - http://people.sc.fsu.edu/~jburkardt/f_src/mgmres/mgmres.html

- Fundamental Operations
 - Dot products
 - Sparse Matrix-Vector Multiplication

- Slow without Preconditioner
Sparse Iterative Solvers Preconditioners

- Incomplete LU
- ARC3D Beam-Warming block tridiagonal scheme.
- F3D Steger-Warming 2-factor scheme.
- ARC3D diagonalized Beam-Warming scalar pentadiagonal scheme.
- LU-SGS algorithm.
- D3ADI algorithm with Huang subiteration.
- ARC3D Beam-Warming with Steger-Warming flux split jacobians.
- SSOR algorithm (with subiteration)
Implicit Artificial Boundaries

Implicit Artificial Boundary

\[
\begin{bmatrix}
A^1 & C^1 \\
C^2 & A^2
\end{bmatrix}
\begin{bmatrix}
\Delta Q^1 \\
\Delta Q^2
\end{bmatrix} =
\begin{bmatrix}
R^1(Q^1, I_h(Q^2)) \\
R^2(Q^2, I_h(Q^1))
\end{bmatrix}
\]

\[C^1 = \frac{\partial R^1}{\partial Q^2}, \quad C^2 = \frac{\partial R^2}{\partial Q^1} \]

Artificial Boundary Linearization

\[C^1 \Delta Q^2 = \frac{\partial R^1(Q^1, I_h(Q^2))}{\partial Q^2} \Delta Q^2 \]

Chain Rule

\[C^1 \Delta Q^2 = \frac{\partial R^1(Q^1, I_h(Q^2))}{\partial I_h(Q^2)} \frac{\partial I_h(Q^2)}{\partial Q^2} \Delta Q^2 \]

Linear Interpolation Operator

\[\frac{\partial I_h(Q^2)}{\partial Q^2} \Delta Q^2 = I_h(\Delta Q^2) \]

GMRES: Matrix-Vector Multiplication

Interior Flux Linearization

\[\frac{\partial R_i(Q^i_L, Q^i_R)}{\partial Q_L} \quad \frac{\partial R_i(Q^i_L, Q^i_R)}{\partial Q_R} \]

Artificial Boundary Linearization

\[C^1 \Delta Q^2 = \frac{\partial R^1(Q^1, I_h(Q^2))}{\partial I_h(Q^2)} \Delta Q^2 \]

Matrix-Vector Product

\[C^1 \Delta Q^2 = \frac{\partial R^1(Q^1, I_h(Q^2))}{\partial Q^1_{R_i}} I_h(\Delta Q^2) = \tilde{C}^1 I_h(\Delta Q^2) \]

Receiver Grid Interpolation Mapping

Array of Matrices

Array of Vectors

Interior Jacobian

RHS Interpolation Operator
Parallel GMRES Iterative Solver

Matrix-Vector Multiplication
Mask Communication with Local Calculations

\[w_{n+1} = A v_n \]

Processor 1

\[
\begin{bmatrix}
 w_{n+1}^1 \\
 w_{n+1}^2
\end{bmatrix} =
\begin{bmatrix}
 A^1 & \bar{C}^1 \\
 \bar{C}^2 & A^2
\end{bmatrix}
\begin{bmatrix}
 v_n^1 \\
 v_n^2
\end{bmatrix}
\]

Processor 2

Interpolate \(I_h(v_n^1) \)

Non-Blocking Send \(I_h(v_n^1) \)

Compute \(w_{n+1}^1 = A^1 v_n^1 \)

Receive \(I_h(v_n^2) \)

Compute \(w_{n+1}^1 = w_{n+1}^1 + \bar{C}^1 I_h(v_n^2) \)

Compute \(w_{n+1}^2 = w_{n+1}^2 + \bar{C}^2 I_h(v_n^1) \)

Interpolate \(I_h(v_n^2) \)

Non-Blocking Send \(I_h(v_n^2) \)

Compute \(w_{n+1}^2 = A^2 v_n^2 \)

Receive \(I_h(v_n^1) \)

Dot Products

Compute Local Dot Product ➔ All Reduce

\[O \left(\frac{n}{p} + \log(p) \right) \]

Parallel Efficient If

\[\frac{n}{p} > \log(p) \]

Preconditioner Omits C Matrices

Jacobi as \(p \rightarrow n \)
Outline

• Discretization Assumptions
• Explicit/Implicit Chimera
• Sparse Iterative Solvers
 – Preconditioners
• Distributed Memory Parallelism
• Discontinuous Galerkin Method
• Inviscid/Viscous Flow Examples
• Conclusion and Future Work
Discontinuous Galerkin Chimera Scheme

- **Discontinuous Galerkin**
 - Weak Form
 \[\int_{\Omega_e} \phi \nabla \cdot \vec{F} \, d\Omega = 0 \]
 \[\phi - \text{Legendre Polynomials} \]

 \[R(Q^+, Q^-) = \int_{\Gamma_e} \phi \vec{F}(Q^+, Q^-) \cdot \vec{n} \, d\Gamma - \int_{\Omega_e} \nabla \phi \cdot \vec{F}(Q^-) \, d\Omega = 0 \]
 - Approximate Riemann Solver by Roe
 - BR2 Viscous Scheme

- **DG-Chimera**
 - Natural Interpolation Operator (Solution is Polynomials)
 - Curved Elements
 - Reduces to a Zonal Interface (Abutting Meshes)
 - No Orphan Points due to Fringe Points
Outline

• Discretization Assumptions
• Explicit/Implicit Chimera
• Sparse Iterative Solvers
 – Preconditioners
• Distributed Memory Parallelism
• Discontinuous Galerkin Method
• Inviscid/Viscous Flow Examples
• Conclusion and Future Work
Inviscid/Viscous Flow Examples

- **Inviscid SKF 1.1 Airfoil**
 - \(M_\infty = 0.4 \)
 - \(\alpha = 2.5^\circ \)

- **Viscous Subsonic Circular Cylinder**
 - \(M_\infty = 0.25 \)
 - \(Re = 40 \)

- **Focus on Solution Time**
 - Explicit vs. Implicit Chimera
Time Integration and Compute Resources

- **Steady State**
 - Quasi-Newton

 \[
 \left(\frac{M}{\Delta t} + \frac{\partial R}{\partial Q} \right) \Delta Q = R
 \]

- **GMRES Krylov Solver**
 - ILU1 Preconditioner
 - Converged to $1e^{-11}$ Each Newton Iteration

- **Intel Core 2 Duo 3.0 GHz processor 8 GB RAM**
 - 10 Compute Nodes
 - Ethernet Connection

- **MPI Parallelism**
 - Timings for 1, 2, 4, and 8 Processors
 - 1 MPI Process per Node (Maximize Communication)

- **Shared Memory Multi-Threaded**
 - 1 Grid Per Thread

\[
CFL^{n+1} = CFL^0 \frac{||R^0||}{||R^n||}
\]

\[
CFL_{max} = 1e30
\]
SKF 1.1 Airfoil ($M_\infty = 0.4$, $\alpha=2.5^\circ$)

Meshes

- Single Mesh: $105 \times 30 N_g=3$
- O-Grid Chimera Mesh: $104 \times 14 N_g=1$
- R-Grid Chimera Mesh: $104 \times 104 N_g=1$

Chimera Interface
SKF 1.1 Airfoil ($M_\infty = 0.4$, $\alpha=2.5^\circ$)

Explicit Chimera Speedup

\[A(Q_{Local}) \Delta Q = R(Q_{Local}, Q_{Chimera}) \]
SKF 1.1 Airfoil ($M_\infty = 0.4$, $\alpha=2.5^\circ$)
Explicit Chimera Convergence History

$$A(Q_{\text{Local}})\Delta Q = R(Q_{\text{Local}}, Q_{\text{Chimera}})$$
SKF 1.1 Airfoil ($M_\infty = 0.4$, $\alpha=2.5^\circ$) Implicit Chimera Speedup

\[A(Q_{Local}, Q_{Chimera})\Delta Q = R(Q_{Local}, Q_{Chimera}) \]
SKF 1.1 Airfoil ($M_\infty = 0.4$, $\alpha = 2.5^\circ$)
Implicit Convergence History

$$A(Q_{\text{Local}}, Q_{\text{Chimera}}) \Delta Q = R(Q_{\text{Local}}, Q_{\text{Chimera}})$$
SKF 1.1 Airfoil ($M_\infty = 0.4$, $\alpha=2.5^\circ$) Solution Time

\begin{equation}
A(Q_{Local})\Delta Q = R(Q_{Local}, Q_{Chimera})
\end{equation}

\begin{equation}
A(Q_{Local}, Q_{Chimera})\Delta Q = R(Q_{Local}, Q_{Chimera})
\end{equation}
SKF 1.1 Airfoil ($M_\infty = 0.4$, $\alpha = 2.5^\circ$) Implicit/Explicit Solution Speedup
SKF 1.1 Airfoil ($M_\infty = 0.4$, $\alpha = 2.5^\circ$)

Cp Contour Lines

N=0
1st-order

N=1
2nd-order

N=2
3rd-order

N=3
4th-order
Circular Cylinder (Re = 40) Meshes

- Single 50x40 $N_g=3$
- O-Grid Chimera 50x22 $N_g=1$
- R-Grid Chimera 100x100 $N_g=1$

Meshes
Circular Cylinder (Re = 40)
Solution Time

\[A(Q_{Local}) \Delta Q = R(Q_{Local}, Q_{Chimera}) \]

10 days!
Circular Cylinder (Re = 40)
Implicit/Explicit Solution Speedup
Subsonic Circular Cylinder (\(M_\infty = 0.25\))

Cp/Entropy Rise Contour Lines

- **N=1**
 - 2\(^{nd}\)-order
- **N=2**
 - 3\(^{rd}\)-order
- **N=3**
 - 4\(^{th}\)-order
Conclusion and Future Work

• Implicit Artificial Boundaries
 – Included with GMRES Matrix-Vector Multiplication
 – Omitted in Preconditioner
 – Minimal Information Communicated
 – Significantly Reduces Execution Time

• Few Modifications Required to Existing Codes
 – ~95% of Code already Exists
 – Spares Matrix-Vector Multiplication
 – Restarted GMRES Fortran Code
 • [Link](http://people.sc.fsu.edu/~jburkardt/f_src/mgmres/mgmres.html)

• Demonstrated on Inviscid/Viscous Flows
Thank you!
Questions?

This work was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program.