Simulations of Coastal Ocean Flows Using Chimera Grids

Hansong Tang, Ke Qu, and Anil Agrawal

Dept. of Civil Eng., City College
City Univ. of New York

12th Symposium on Overset Grid Symposium
Georgia Tech, Oct. 6-9, 2014

Supported by NSF (CMMI #1334551), PSCUNY
Outline

I. Introduction: Needs and current status
II. Modeling framework
III. Coupling strategies
IV. Application examples
V. Concluding remarks
I. Introduction: Needs and current status

Coastal Flows: Example Problems

Bridge carrying US-90 damaged during Hurricane Katrina (Douglass et al. 2006)

A destroyed section of boardwalk at Long Beach, NY (Photo by Bruce Bennett/Getty Images)
A modeling question:
How can we make a high fidelity, detailed simulation of such phenomena, considering actual settings, forcing, etc.?

Other problems: oil spill, ...
I. Introduction: Needs and current status

Current Status, Challenge, and Approach

- Large-scales: geophysical fluid dynamics (GFD): $O(10) - O(10,000)$ km, $O(1)$ min – $O(1)$ month
- Smaller scales: fully 3D fluid dynamics (F3DFD): $O(10)$ cm – $O(10)$ km, $O(1)$ ms – $O(1)$ hr
- Challenges: coastal ocean flows are multi-scale, multi-physics, most current models are designed for individual phenomena: circulation, wave, etc.
- Objective: high-fidelity, detailed simulation of coastal ocean flows, especially those at small scales.
- Approaches: Hybrid GFD/F3DFD (with change in the two models as less as possible)
- References of this presentation:
 - Tang, Wu, and Qu, JCP 2014
 - Tang, Qu, Wu, and Zhang, DD22, Lugano, Switzerland, 2013.
 - Tang and Wu, IEMSS, Ottawa, Canada, 2010
 - Tang, Comput. & Fluids, 2006
 - Tang, Jones, and Sotiropoulos, JCP 2003
II. Modelling framework

Fully 3D Fluid Dynamics and Coastal Ocean Model

\[\nabla \cdot \mathbf{u} = 0, \]
\[\mathbf{u}_t + \nabla \cdot \mathbf{u}\mathbf{u} = -\frac{1}{\rho_0} \nabla p + \nabla \cdot ((\nu + \nu_t)\nabla \mathbf{u}) - g(1 - \alpha (T - T_0) - \beta (C - C_0)) \mathbf{k}, \]
\[T_t + \nabla \cdot (\mathbf{u} T) = \nabla \cdot \left(\left(\frac{\nu}{Pr} + \frac{\nu_t}{Pr_t} \right) \nabla T \right). \]

SIFOM -- solver for incompressible flow on overset meshes (Tang et al. 2003; Ge and Sotiropoulos 2005, ...)

Gravity & buoyancy

External mode

\[\eta_t + \nabla_H \cdot (\mathbf{vD}) = 0, \]
\[(\mathbf{vD})_t + \nabla_H \cdot (\mathbf{vD}D) = -g D \nabla_H \eta + \frac{\tau_s - \tau_b}{\rho_0} + \mathbf{G}. \]

Internal mode

\[\eta_t + \nabla_H \cdot (\mathbf{vD}) + \omega_\sigma = 0, \]
\[(\mathbf{vD})_t + \nabla_H \cdot (\mathbf{vD}D) + (\mathbf{v}\omega)_\sigma = -g D \nabla_H \eta + \nabla_H \cdot (\kappa \mathbf{e}) + \frac{1}{D} (\lambda \mathbf{v}_\sigma)_\sigma \]
\[- \frac{g D}{\rho_0} \left(\nabla_H \left(D \int_\sigma^0 \rho d\sigma' \right) + \sigma \rho \nabla_H D \right) + \mathbf{H}, \]
\[(\mathbf{T})_t + \nabla_H \cdot (\mathbf{T}D) + (\mathbf{T}\omega)_\sigma = \nabla_H \cdot (\theta \nabla_H T) + \frac{1}{D} (\vartheta T_\sigma)_\sigma + \mathbf{I}. \]
II. Modelling framework

Outline of Coupling

SIFOM/FVCOM coupling:

--- Domain decomposition, Chimera grids, overlapping regions, and Schwarz alternative iteration
--- Coupling between SIFOM and FVCOM: exchange of solution for η, u, v, w
--- Tri-linear interpolation, FVCOM \Rightarrow SIFOM, SIFOM \Rightarrow FVCOM

Focus of this presentation: 1) Treatments of coupling
2) Demonstration of feasibility and performance
III. Coupling strategies

Test1 --- Flow over Sill

Configuration of channel and sill

\[
\begin{align*}
-1500 & < x < 2000, \\
y & = \pm 200(1 - 0.8 e^{-4 \times 10^{-6} x^2}), \quad x < 0; \quad y = \pm 40, \quad x > 0, \\
z & = -150 + \frac{140}{1 + (x/500)^4}, \quad x < 0; \quad z = -120 + \frac{110}{1 + (x/500)^4}, \quad x > 0,
\end{align*}
\]

IC & BC

\[
\begin{align*}
u, v, w &= 0, \quad t = 0, \\
\eta u &= 0.9175(1 - e^{-0.01t}), \quad x = -1500; \quad \eta = 0, \quad x = 2000.
\end{align*}
\]
III. Coupling strategies

Test2 --- Thermal Discharge Flow

<table>
<thead>
<tr>
<th>Ambient parameter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity, U_d (m/s)</td>
<td>0.05</td>
</tr>
<tr>
<td>Temperature, T_d (°C)</td>
<td>20.5</td>
</tr>
<tr>
<td>Channel depth, H (m)</td>
<td>12.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effluent parameter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity, U_d (m/s)</td>
<td>3.92</td>
</tr>
<tr>
<td>Temperature, T_d (°C)</td>
<td>32.0</td>
</tr>
<tr>
<td>Port diameter, d (m)</td>
<td>0.175</td>
</tr>
<tr>
<td>Port length, L_d (m)</td>
<td>0.91</td>
</tr>
<tr>
<td>Port angle, α (degree)</td>
<td>30°</td>
</tr>
<tr>
<td>Pipe diameter, D (m)</td>
<td>1.32</td>
</tr>
</tbody>
</table>
III. Coupling strategies

Treatment of Hydrostatic Pressure

SIFOM and SIFOM1 perform differently. Why?

SIFOM1-FVOCM

Differential-integral equation

\[
\mathbf{u}_t + \nabla \cdot \mathbf{u} \mathbf{u} = -\frac{1}{\rho_0} \nabla p_d + \nabla \cdot ((\nu + \nu_t) \nabla \mathbf{u}) - g \nabla_H \left(\eta - \int_0^\eta \left(\alpha(T - T_0) + \beta(C - C_0) \right) d\zeta \right),
\]

\[
-\frac{1}{\rho_0} \nabla_z p_h = g \left(1 - \alpha(T - T_0) - \beta(C - C_0) \right) k.
\]
III. Coupling strategies

Treatment of Buoyancy

\[p = p_h + p_d', \quad \frac{1}{\rho_0} \nabla z p_h = g k, \]

\[\mathbf{u}_t + \nabla \cdot \mathbf{u} \mathbf{u} = -\frac{1}{\rho_0} \nabla p'_d + \nabla \cdot ((\nu + \nu_t) \nabla \mathbf{u}) - g \nabla H \eta + g (\alpha (T - T_0) - \beta (C - C_0)) k. \]

SIFOM1

SIFOM2

No buoyancy

0.4 million nodes
CPU time comparison

<table>
<thead>
<tr>
<th>Model</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFOM 1</td>
<td>300%</td>
</tr>
<tr>
<td>SIFOM 2</td>
<td>100%</td>
</tr>
</tbody>
</table>
III. Coupling strategies

Treatment of Buoyancy

\[p = p_h' + p_d', \quad -\frac{1}{\rho_0} \nabla_z p_h' = g \mathbf{k}, \]

\[u_t + \nabla \cdot uu = -\frac{1}{\rho_0} \nabla p_d' + \nabla \cdot (\nu + \nu_t) \nabla u - g \nabla_H \eta + g(\alpha(T - T_0) - \beta(C - C_0)) \mathbf{k}. \]

<table>
<thead>
<tr>
<th></th>
<th>SIFOM1</th>
<th>SIFOM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFOM-FVCOM</td>
<td>123%</td>
<td>100%</td>
</tr>
</tbody>
</table>

SIFOM: 0.4 million nodes
FVCOM: 70k elements

CPU time

SIFOM1-FVCOM
SIFOM2-FVCOM
No buoyancy
III. Coupling strategies

Simulations and Convergence Test

T=10,000 s

T=100 s

<table>
<thead>
<tr>
<th>Accuracy order k</th>
<th>p</th>
<th>η</th>
<th>u</th>
<th>v</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFOM model</td>
<td>0.96</td>
<td></td>
<td>1.75</td>
<td>2.12</td>
<td>1.63</td>
</tr>
<tr>
<td>FVCOM</td>
<td>1.08</td>
<td></td>
<td>1.53</td>
<td>2.73</td>
<td>1.68</td>
</tr>
</tbody>
</table>
IV. Application examples

Flow past Bridge Peers in Channel

Peer configuration

mesh

Simulation
IV. Application examples

Comparison with Measurement

Velocity profiles at different locations
IV. Application examples

Flow Past Coastal Bridge – Model Setup

Meshes of FVCOM and CFD model
IV. Application examples

Simulated Flows

Flood tide Ebb tide

(a) (b)

(c) (d)

Velocity (m/s)

0.0 0.2 0.4 0.6 0.8 1.0

Velocity magnitude (m/s)
V. Concluding remarks

Discussions

Conclusion:
1) Chimera grid method is promising in coupling fully 3D fluid dynamics and coastal ocean models, which is challenging; it integrates different governing equations, distinct numerical systems, and dissimilar meshes.
2) SIFOM-FVCOM works well, and it can be applied to actual problems.

Future work:
1) More validation and experiment of the modeling system
2) Better model interface algorithms
3) Improve computational efficiency of the system
4) ……

Question?

Thanks!