Development of a High-Order Strand Solver for Helios

Andrew Wissink, U.S. Army Aviation Development Directorate - AFDD
Jayanarayanan Sitaraman, Parallel Geometric Alg LLC
Aaron Katz, Utah State University

Presented by:
Dr. Jayanarayanan Sitaraman
Parallel Geometric Algorithms, LLC
Outline

• Background & Motivation
• High-order Solver formulation
• Preliminary Results
• Summary and Conclusions
Background

• Complexities in high fidelity rotary-wing aeromechanics prediction
 – Complex geometries
 – High-Re wall-bounded viscous flow
 – Wake resolution
 – Strong aero-structure coupling, particularly blade twist from pitching moment
Issue #1: Automation

- Rotorcraft CFD steps

How do we enable skilled rotorcraft engineers to use high-fidelity CFD tools without forcing them to become grid generation experts?
Issue #2: Accuracy

- Lower order near-body solver limits ability to resolve tip rollup

Comparing PIV-measured vorticity to computation

HART-II

Tip vortex dissipation

Lim et al AHS Forum'2012
Issue #3: Speed

- Near-body solver is the most expensive portion of the simulation

Model V22 Hover - 128 procs

Two-thirds total cost

UH60 Fwd Flight – 512 procs
Strand Technology Addresses these Issues

• Automation
 – Near-body strands grown directly from surface tessellation
 – Cartesian off-body resolution adjusted according by available compute resources
 – *Strand-Cartesian volume mesh generated automatically at runtime*

• Accuracy & Efficiency
 – High-order solver formulation that takes advantage of strand data structure
 – Fast and scalable domain connectivity
 – Structured data ensures fast numerics
 – *4th order solutions at only 1.5X cost of 2nd order solutions*
Outline

• Background & Motivation
• High-order Solver formulation
• Preliminary Results
• Summary and Conclusions
• **Strand normal direction:**
 High Order Finite Differences
 – Summation by parts with variable coefficients
 – Reduces to finite difference at interior
 – Satisfies stability and accuracy constraints

• **Unstructured streamwise direction:**
 High Order Flux corrections
 – Achieves high order through truncation error cancellation of finite volume scheme
 – Layers coupled via source term containing derivatives in strand direction
Solver

RANS-SA equations

\[\frac{\partial Q}{\partial t} + \frac{\partial F_j}{\partial x_j} - \frac{\partial F_j^v}{\partial x_j} = S \]

\[
Q = \begin{pmatrix}
\rho \\
\rho u_i \\
\rho e \\
\rho \tilde{v}
\end{pmatrix}, \quad F_j = \begin{pmatrix}
\rho u_j \\
\rho u_i u_j + p \delta_{ij} \\
\rho h u_j \\
\rho \tilde{v} u_j
\end{pmatrix}, \quad F_j^v = \begin{pmatrix}
0 \\
\sigma_{ij} \\
\frac{n}{\sigma} \frac{\partial \tilde{v}}{\partial x_j} \\
q_j
\end{pmatrix}, \quad S = \begin{pmatrix}
0 \\
0 \\
0 \\
(P - D + C_{b2} \rho \frac{\partial \tilde{v}}{\partial x_k} \frac{\partial \tilde{v}}{\partial x_k})
\end{pmatrix}
\]

\[P = \begin{cases}
\rho C_{b1} (1 - f_{i2}) \tilde{S} \tilde{v}, & \tilde{v} \geq 0 \\
\rho C_{b1} (1 - C_{t3}) \Omega \tilde{v} & \tilde{v} < 0
\end{cases} \quad D = \begin{cases}
\rho \left(C_{\omega 1} f_{\omega} - \frac{C_{b1}}{\kappa^2} f_{i2} \right) (\frac{\tilde{v}}{\tilde{a}})^2, & \tilde{v} \geq 0 \\
-\rho C_{\omega 1} (\frac{\tilde{v}}{\tilde{a}})^2 & \tilde{v} < 0
\end{cases} \]

- Spalart Allmaras turbulence model treatment
 - Allows negative turbulence working variable (Allmaras 2012)
 - Fully-coupled high-order treatment
Strand Mapping

- Map from physical to computational space
 - Equally-spaced sub-triangles in r-s (streamwise) plane in computational space
 - Cubic or quadratic sub-triangles
 - Stretched node distribution in η (normal) direction mapped to equal-spaced distribution in computational space
 - Surface triangles treated as cubic or quadrilateral elements
Flux Correction Scheme

- **Finite Volume flux balance**

\[
F^h_{0i} = \frac{1}{2} (F^L_{0i} + F^R_{0i}) - \frac{1}{2} \left| A(Q^R, Q^L) \right| (Q^R - Q^L)
\]

- **Compute left/right fluxes such that truncation error of each cancels when added together**

\[
F^L_{0i} = F^h_0 + \frac{1}{2} \Delta r^T_{0i} \nabla^h F^h_0
\]

\[
F^R_{0i} = F^h_i - \frac{1}{2} \Delta r^T_{0i} \nabla^h F^h_i
\]

- **Advantages:**
 - Able to leverage finite volume techniques (shock capturing, efficient solvers, etc.)
 - no high-order quadrature or least squares reconstruction
 - builds on existing infrastructure
Extend flux corrected schemes to turbulent flows on high aspect ratio strand grids.

Flux Correction Schemes

Previous Work

Katz and Sankaran

- Subsonic
 NACA 0012
 (steady, inviscid)
 - Finite Volume
 - Flux Corr

- Fin Vol - 8619 nodes
- Flux Corr - 4620 nodes

Pincock and Katz,
AIAA-2013-2566

- Shedding square
 (M=0.1, Re=250, ~3000 nodes)
 - Finite Volume
 - Flux Corr
Strand Direction Coupling

- Treat strand direction derivatives as source term to preserves flux correction accuracy

\[
\frac{\partial Q}{\partial \tau} + \frac{\partial F}{\partial r} + \frac{\partial G}{\partial s} - \frac{\partial F_{i\nu}}{\partial r} - \frac{\partial G_{i\nu}}{\partial s} = \tilde{S},
\]

\[
\tilde{S} \equiv \hat{S} - \frac{\partial \hat{Q}}{\partial t} - \frac{\partial \hat{H}}{\partial \eta} + \frac{\partial \hat{H}_{i\nu}}{\partial \eta}.
\]

\[
\frac{\partial F}{\partial x} = \tilde{S}, \quad \tilde{S} \equiv S - D_y G
\]

\[
D_y G = \frac{\partial G}{\partial y} + O(h^p)
\]

Source Treatment

\[
\frac{1}{\Delta x_{i,j}} \left[\left(F_{i+\frac{1}{2},j} - F_{i-\frac{1}{2},j} \right) - S_{i,j}^h \right] = \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} - S
\]

cancels

\[
\frac{\Delta x_{i+\frac{1}{2}} + \Delta x_{i-\frac{1}{2}}}{24 \Delta x_i} \left(F_{3x} - \tilde{S}_{2x} \right) + O(h^p) + O(h^q) + O(h^3).
\]

No Source Treatment

\[
\frac{1}{\Delta x_{i,j}} \left[\left(F_{i+\frac{1}{2},j} - F_{i-\frac{1}{2},j} \right) + D_y G_{i,j} - S_{i,j}^h \right] = \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} - S
\]

does not cancel

\[
- \frac{\Delta x_{i+\frac{1}{2}} + \Delta x_{i-\frac{1}{2}}}{24 \Delta x_i} \left(F_{3x} - S_{2x} \right) + O(h^p) + O(h^q) + O(h^3).
\]
Strand Direction

- High order achieved in strand direction through finite differences
 - Summation by parts operators
 - Energy stable
 - Fernandez & Zingg, 2012; Mattsson, 2012

- Accuracy
 - 2p interior
 - p boundary
 - p+1 overall
 - Implemented p=1,2,3

3, 5, 7 point stencil
Accuracy Verification (cont)

- Inviscid terms only
- Viscous terms only
- Inviscid + Viscous

Method of Manufactured Solns

Re=100 Cylinder

3rd-4th Order achieved in tests
• **Semi-implicit Multi-grid scheme**
 – Standard FAS multigrid (Brandt, 1977)
 – LU-SGS (Yoon, Jameson) on strand layers
 – Local RK with implicit smoothing on each unstruct plane (Jameson, Mavriplis)
 – Use of triangles enables 3-element coarsening without agglomoration
Outline

- Background & Motivation
- High-order Solver formulation
- Preliminary Results
- Summary and Conclusions
Laminar Flow Validation

- **Flow over circular cylinder**
 - Re=100

<table>
<thead>
<tr>
<th>Mesh</th>
<th>2nd Order</th>
<th>4th Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse (96x32)</td>
<td>steady</td>
<td>0.141</td>
</tr>
<tr>
<td>Medium (192x64)</td>
<td>0.159</td>
<td>0.165</td>
</tr>
<tr>
<td>Fine (384x128)</td>
<td>0.177</td>
<td>0.167</td>
</tr>
</tbody>
</table>

Experiment: $St = 0.16-0.17$
Turbulent Flow Validation

- Flow over channel bump
 - $M = 0.2$
 - $Re = 3$ Million
 - 4th order

Good correlation with NASA’s FUN3D, CFL3D

- FUN3D and CFL3D results from 1409x641 grid
- Strand grid 40X coarser
• Added moving grid terms

Moving sphere

M = 0.5

<table>
<thead>
<tr>
<th></th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>0.2861</td>
</tr>
<tr>
<td>*Moving</td>
<td>0.3002</td>
</tr>
</tbody>
</table>

*Moving grid convergence limited by fine off-body grid extents
Dual Mesh Validation
Timing comparison w Helios

- **Same mesh, Helios vs strand solver**
 - NSU3D run on strand mesh
 - strand solver cell-centered, more DOF

<table>
<thead>
<tr>
<th></th>
<th>Helios</th>
<th>Strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Near-body</td>
<td>0.086s</td>
<td>0.604s</td>
</tr>
<tr>
<td>Off-body</td>
<td>1.82s</td>
<td>1.75s</td>
</tr>
<tr>
<td>Domain connectivity</td>
<td>6.26e-3</td>
<td>7.42e-3</td>
</tr>
</tbody>
</table>

Dstrand solver uses more DOF than Helios
Dual Mesh Validation
Turbulent bluff body

- **Helios implementation**
 - Strand near-body
 - SAMARC off-body

- **Bluff body separated flow over sphere**
 - $M = 0.3$, $Re = 12.0E6$
 - Dual mesh
 - Adaptive
3D Wing

- **NACA 0015 Wing**
 - Aspect Ratio = 6.6
 - $M = 0.1235$, $Re = 1.5E6$
 - Dual mesh
 - Adaptive

V_∞

$M_\infty = 0.1235$, $\alpha = 12^\circ$
• **4th order** strand-based FV scheme order of magnitude cheaper than Discontinuous Galerkin (DG) methods
 – Standard finite differences in normal (strand) direction
 – Standard finite volume flux correction in streamwise directions

Cost of 4th order scheme comparable to standard 2nd order

Courtesy D. Work, Utah St.
Summary & Conclusions

- Strand technology will improve automation, accuracy, and efficiency in Helios
- In past OGS meetings we have reported on strand-specific meshing infrastructure (PICASSO) and domain connectivity (OSCAR)
- Present development focus is an efficient high-order near-body strand solver
 - Achieve up to 4th-order through a combination of finite difference and flux correction operations
 - Cost comparable to standard 2nd-order FV methods; order of magnitude cheaper than high order finite element (DG) methods
 - Accuracy on par with established FUN3D, CFL3D codes
- Anticipate initial capability release in Helios v6 (Summer 2015)
 - Multiple bodies
 - Complex geometries
Acknowledgements

Material presented is a product of the CREATE AV element of the Computational Research and Engineering for Acquisition Tools and Environments (CREATE) program sponsored by the U.S. Dept. of Defense HPC Modernization Program Office.

DISCLAIMER: Reference herein to any specific commercial, private or public products, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the United States Government. The views and opinions expressed herein are strictly those of the authors and do not represent or reflect those of the United States Government. The viewing of the presentation by the Government shall not be used as a basis of advertising.