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Overset State of the Art 

Two	
  addi(onal	
  solu(on	
  steps	
  required:	
  

1.  Domain decomposition 
•  Hole cutting 
•  Fringe point identification 
•  Donor-receptor search 

 can result in “orphan” 
points 

2.  Data transfer 
•  Interpolation from  

donor points to  
receptor points 

•  Typically trilinear interpolation 
or linear mapping applied 

Fringe points 
(background) 

Holes	
  

Fringe points 
(near-body grid) 
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Overset State of the Art: Orphans 
•  Two levels of fringes required to maintain high-order accuracy 

(Gaitonde & Visbal 2000) 
•  Orphan points can arise due to inadequate grid overlap (depicted 

by square symbols) 

Source:	
  R.W.	
  Noack	
  and	
  D.A.	
  Boger,	
  “Suggar++	
  Users	
  
Guide	
  for	
  Version	
  1.0.28”,	
  October	
  1,	
  2010.	
  

Fringes	
  
shown	
  
(points)	
  

Fringes	
  
hidden	
  

Gap	
  between	
  
meshes	
  	
  
extrapola(on	
  
will	
  be	
  
necessary	
  

Orphans	
  due	
  to	
  
poor	
  donors,	
  
e.g.	
  donors	
  are	
  
fringe	
  or	
  out	
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Treatment of Orphan Points 

•  Orphans handled by 
averaging (Rogers et al. 
2000, Noack 2006) 

•  User intervention 
–  Interface grid may be 

added (in blue on the right) 
–  Redesign grids for 

improved overlap 
–  Added cost in engineering 

hours or computation time 
•  Accept reduced fidelity 

due to unresolved or 
poorly resolved fringe 
points 

From Suggar++ Users Guide 
for Version 1.0.28 
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Data Transfer State of the Art 

•  Inconsistency: Flow solver order of accuracy (≥2) and data 
transfer accuracy (linear interpolation, order=2) (Chesshire & 
Henshaw 1990, Delfs 2001) 

•  Linear overset interpolation techniques can cause distortion of 
flow features (Foster & Noack 2012) 

•  Degraded solution quality in the vicinity of fluctuations and 
discontinuities (Delfs2001), e.g., acoustic pressure and turbulent 
flow fields 

Turbulent	
  airwake	
  behind	
  a	
  naval	
  frigate	
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A Cloud-Based Approach 

•  Interpolation and extrapolation based on a set of arbitrarily 
distributed donor points within a neighborhood of a receptor 

•  Approach is completely stencil free, applicable to any 
topology in any dimension 

•  Handles configurations with/without orphans in the same 
manner 

Normal fringe point Orphan point 

x 

x 

x : receptor 
    : selected 
      donor pts 
   : fringe pts 
      on donor 
      grid 
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Selection of Mapping Technique 

•  Applying high-order polynomials can be problematic 
–  Spurious oscillations possible (Desquenes et al. 2006) 
–  Can apply a filtering approach to select coefficients that minimize 

error (Sherer & Scott 2005) or a limiter for stability (Lee et al. 2011) 
–  For arbitrary distributions of points, system of equations not 

guaranteed to be solvable (Sherer & Scott 2005), limiting applicability 
for grids with orphans 

•  Finite element isoparametric mappings retain dependency 
on connectivity and application as a cloud-based approach 
susceptible to numerical error 

•  Focus is therefore on scattered data interpolation 
techniques with radial basis functions (RBFs) 

!(r) =!(!x, !xc ) =!(
!x " !xc 2

)
Basis is function of Euclidean distance between x 

and chosen RBF centers 
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Radial Basis Functions 

 The interpolant:    subject to: 

•  Can be applied to the global set of all grid points or a 
local subset of points within a neighborhood of each 
receptor  

•  Solution approach 
1.  Form LHS based on chosen basis function Φ(x), 

optional polynomial p(x), and set of RBF centers X 
2.  Solve linear system for interpolation coefficients, α and 

β 
3.  Rewrite LHS based on target points  
4.  Solve for the interpolant (RHS) 

•  Trade-off between accuracy and numerical  
stability 
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Choice of Radial Basis Function 

•  Radial basis functions (RBFs) with shape parameters can 
require optimization for best performance  
–  Can apply least squares or Leave-one-out Cross-Validation 

(LOOCV) approaches (Casa & Krueger 2013) 
–  Added uncertainty and cost 

•  Selected RBFs: Globally-supported Thin-plate spline 
(Smith et al. 2000) and compactly-supported Wendland C2 
(de Boer et al. 2010, Rendall & Allen 2009, Costin & Allen 
2013) basis functions considered  
–  Compact functions are identically zero outside of a nominal support 

radius, permitted to vary throughout the flow field depending on local 
mesh density 

–  Compact support can improve performance and conditioning of 
interpolation problem 

–  By definition Wendland C2 is twice continuously differentiable 
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Radial Basis Function Properties 

•  Choice of donor points coincident with RBF centers guarantees 
existence of interpolant (Mairhuber-Curtis theorem) 

•  Positive-definite functions guarantee invertibility of interpolation 
matrix(Wendland 2005) 

•  Compact functions (Schaback 1995) are positive definite and 
may be derived with arbitrary smoothness properties 
(Wendland 2005) 

•  Donor points rescaled to lie on unit domain, implicitly specifying 
the support radius 

Compact	
  
funcUon	
  
idenUcally	
  zero	
  
for	
  r>1	
  

Thin-plate spline: 

Wendland C2: 

!(r) = r2 logr

!(r) = (1! r)4(4r +1)



11 

Interpolation Order of Accuracy 

•  Improvements over linear 
techniques achieved with more 
donor points 

•  RBF accuracy increases with donor 
points (fine-to-coarse interpolation) 
–  With 36 donors, error converges at 

~O(h2.5) 
–  In global limit, ~O(h3.4) 

•  With fewer donor points or coarse-
to-fine interpolation, approximately 
second order 

Quad(4)  = bilinear interpolation 
Tri(3)  = linear mapping with  
                 barycentric coordinates 
Tri(6)       = quadratic mapping 
W2       = Wendland C2 RBF 

CoarseFine	
   Fine	
  Coarse	
  

Sample	
  
analy7cal	
  
PDE	
  
solu7on	
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Computational Methodologies 

•  NASA FUN3D solver 
– Solves unsteady Reynolds-averaged Navier-Stokes 

(URANS) equations, for compressible, viscous flows on 
unstructured mixed-element meshes 

– Has overset and adaptive grid capabilities 
–  2nd order in space and time 

•  Auxiliary Codes: 
– SUGGAR++ (Structured, Unstructured, Generalized 

overset Grid AssembleR) 
– DiRTlib (Donor interpolation Receptor Transaction 

library) 
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Modifications to Computational Tools 

•  SUGGAR++ 
–  Interpolation donor points identified using existing 

neighbor search routines 
– Existing connectivity information used for 

convenience to expand the interpolation cloud 
– Pre-calculation (and inversion, for non-moving grid 

problems) of interpolation matrices 
•  DiRTlib 

–  Interpolation weights updated at each time step  
as weights are no longer dependent on mesh 
geometry alone 
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Convecting Vortex 

•  Inviscid, incompressible, convecting vortex 

•  Unstructured grid system is a simplified version of 
Sherer & Scott 2005 test case 

•  Simulation performed using FUN3D and modified 
auxiliary codes (SUGGAR++, DiRTlib) 
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Convecting Vortex 

Single	
  grid	
  
(reference	
  
soluUon)	
  

Trilinear	
  
interpola(on	
  
between	
  	
  
overset	
  grids	
  
(no	
  orphans)	
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Convecting Vortex with Orphan points 

Trilinear	
  
interpola(on	
  
between	
  	
  
overset	
  grids	
  
with	
  orphans	
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Convecting Vortex with Orphan points 

RBF	
  interpola(on	
  
between	
  	
  
overset	
  grids	
  
with	
  orphans	
  

Trilinear	
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between	
  	
  
overset	
  grids	
  
with	
  orphans	
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Convecting Vortex: Isolated Overset Errors 

Streamwise	
  velocity	
   Normal	
  velocity	
  

•  A time step refinement study was performed to isolate 
overset errors through Richardson extrapolation 

•  Overset errors were determined by subtracting the 
extrapolated single-grid spatial error (0) 
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Convecting Vortex: Isolated Overset Errors 

•  Overset error consistently reduced by the RBF 
overset algorithm for cases both with and without 
orphans 

•  At finest grid level, errors are dominated by grid 
resolution rather than interpolation 

•  Approximately 30% overset error reduction typically 
observed without orphans 

•  Overset errors with orphans typically reduced over 
70% 
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Convecting Vortex: Conservation Errors 

•  Mass and momentum fluxes calculated along the outer 
boundary with Romberg integration quantifying the 
extent that conservation laws are satisfied when orphans 
are present 

•  RBF approaches provide an order of magnitude 
reduction in transient conservation error 

Mass	
  flux	
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Convecting Vortex: Conservation Errors 

•  RBF calculations do not simply scale errors 
•  Transients persist when applying the traditional 

linear overset approach  
Streamwise	
  Momentum	
  Flux	
   Normal	
  Momentum	
  Flux	
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Computational Cost 

•  Cost measured in 
average wallclock time 
on baseline/refined grids 

•  Overset convecting 
vortex (serial) 
–  Minimum cost increase 

for RBF = 2% (of solver 
time) 

–  Increase in cost ~0.3 s / 
iteration 

•  Overset convecting 
vortex with orphans 
(serial) 
–  11-16% increase in cost 
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Turbulent Ship Airwake 

•  Headwind flow over a simple frigate shape (SFS2) 
model 

•  Near-body ship grid (boundaries extending outward 
approximately half a ship length) overset onto 
background grid 

Recirculation region 
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•  Qualitative differences noted in the hangar wake 

Turbulent Ship Airwake 

Trilinear overset interpolation 

RBF overset interpolation 

Streamlines indicate single grid reference solution 
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Turbulent Ship Airwake 

Overset Method Separation Location  
(normalized by hangar height) 

Single Grid 0.525 
Trilinear Interpolation 0.476 
Thin-plate spline RBF interpolation 0.518 
Wendland C2 RBF interpolation 0.517 

•  RBF methods predict separation location on deck to 
within 2% 

•  Cost increase per step is approximately 6%, equal 
to ~1 second per step 
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Conclusions 

•  Cloud-based data transfer with RBFs eliminates 
problems with identifying donors for orphan points 

•  Errors consistently reduced on two- and three-
dimensional grids both with and without orphans 
–  0.5-1.5 orders of magnitude reduction on grids with 

orphans 
–  Transient conservation errors are minimized 

•  Added cost of applying RBF interpolation is negligible 
for normal overset configurations 
–  Increase in cost ~11% for cases with orphans on 

baseline grid 
–  Cost can be reduced in parallel (reducing the number of 

fringes/processor) 
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