
 - Cassiopée -
CFD Advanced Set of Services In

an Open Python EnvironmEnt

S. Péron, C. Benoit, S. Landier, P. Raud
ONERA – CFD & Aeroacoustics Dept

12th Symposium on Overset Composite Grids and Solution Technology
October 6-9, 2014, Georgia Institute of Technology, Atlanta

 Cassiopée: a set of open python modules:
 Based on python/CGNS standard

− http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/python/sidstopython.pdf

 Each module compiles and can be installed
independently

 Capitalization of pre- and post-processing functions

2

 Developed by ONERA (2008-today):
 Used for CFD, CAA, ...

• Minor mesh modifications

• Preparation of computations

• Code coupling

• Solution post-processing
 Used by ONERA, Safran, AIRBUS, EDF

3

On-line documentation:
http://elsa.onera.fr/Cassiopee/Userguide.html

 Reference documentation
 Tutorials
 Gallery

On-line discussion forum:
http://elsa.onera.fr/Cassiopee/Forum/index.php

 News
 Bug reports
 Scripts
 Improvements, suggestions

 Diffusion:
– Full version is delivered with ONERA elsA software

– 95% as Open-source (since dec. 2013)

6

pyTree

 Full computation data stored in a tree : the
pyTree
 Mesh, BCs, fields...

 A pyTree is an imbricated python list

7

pyTree

 Cassiopée: a set of functions:

 t' = f(t), where t is a pyTree
 Each function f acts on:

– Mesh coordinates

– Connectivity (if relevant)

– FlowSolutionNodes (if any)

– FlowSolutionCenters (if any)

– BCs (if relevant)

8

Mesh types

STRUCT

HEXA TETRA

PYRA PENTA

BAR
TRI

QUAD

NGON

9

• Usage:

– Python scripts

– GUI (tkCassiopee)

10

List of Cassiopée modules

 Converter/Internal [C]: conversion / handling of arrays / pyTrees

 Geom [D]: geometry/surface definition functions

 Generator [G]: mesh generation functions

 Transform [T]: mesh transformation functions

 Post [P]: CFD solution post-processing functions

 Initiator [I]: solution initialization functions

 Connector [X]: connectivity computation

 Dist2Walls [DTW]: distance to walls computation

 Distributor2 [D2]: load balance functions

 RigidMotion [R]: rigid motion definition

 CPlot [CPlot]: graphic display of pyTrees

11

TFIs

Normal extrusion

Generator module [G]

12

Surface
orthogonal walk

Boolean operators on surfaces

2D Delaunay

Generator module [G]

Collar grids

13

Mesh refinement

Generator module [G]

Mesh stretching

14

Octrees (generation/adaptation)

Generator module [G]

Set of structured Cartesian grids

15

Projections

Mesh smoothing

Mesh merging

Transform module [T]

Mesh splitting

16

Connector module [X]

Blanking

Overset grid connectivity

Automatic detection of
matching boundaries

17

Post module [P]

Interpolation on an extraction mesh

Iso-surface extraction
Field integration on
curves/slices/surfaces

18

Dist2Walls module [DTW]

Signed distance field
(turbulent distance, level set)

19

Application to surface offset

20

Surface offset

=> Useful for blanking

21

Surface s

Unstructured octree
o=G.octree(s)

22

Surface s

Unstructured octree
o=G.octree(s)

Wall distance
o=DTW.distance2Wall(o,s)

23

Surface s

Unstructured octree
o=G.octree(s)

Wall distance
o=DTW.distance2Wall(o,s)

Octree adaptation
o=G.adaptOctree(o)

Indicator field
o=C.initVars(o,formula)

24

Surface s

Unstructured octree
o=G.octree(s)

Wall distance
o=DTW.distance2Wall(o,s)

Octree adaptation
o=G.adaptOctree(o)

Isosurface d=offset
s2=P.isoSurfMC(o,dist=d)

Indicator field
o=C.initVars(o,formula)

25

Surface s

Unstructured octree
o=G.octree(s)

Wall distance
o=DTW.distance2Wall(o,s)

Octree adaptation
o=G.adaptOctree(o)

Isosurface d=offset
s2=P.isoSurfMC(o,dist=d)

Mesh smoothing
s2=T.smooth(s2)

Indicator field
o=C.initVars(o,formula)

26

Overset connectivity

 Overset grid assembly can be performed using
« simple » separated functions :

 Blanking
 Overlap optimization
 Interpolation coefficients and donor search
 Transfer of the solution

27

Overset connectivity

 A field cellN (located at nodes or centers) is
used to mark points as:

 computed (cellN=1)
 interpolated (cellN=2)
 blanked (cellN=0)

 Finally, overset connectivity data is stored in
the pyTree (donors,receivers, interpolation
method, order, coefficients)

28

Overset connectivity

Implemented techniques:
– Blanking with Object X-Rays (Meakin)

– Blanking with TETRA volumes

– Overlap optimization: PEGASUS algorithm

– Projection for interpolated wall points on grid
surfaces

– Interpolations :
• 2nd order, 3rd and 5th orders (Lagrangian) for

structured grids

• Moving-Least Squares (3rd order currently) for all
grid types

29

Mark cellN=2 for d points at
overlap borders

t=X.applyBCOverlaps(t,d)

2 near-body grids around cylinders,
off-body Cartesian grid

Interpolated (cellN=2)
Computed (cellN=1)

30

Bodies

Mark cellN=2 for d points at
overlap borders

t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies
and assembly rules

t=X.blankCells(t,bodies,AM)

31

Blanked (cellN=0)
Interpolated (cellN=2)
Computed (cellN=1)

Mark cellN=2 for d points at
overlap borders

t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies
and assembly rules

t=X.blankCells(t,bodies,AM)

Mark d fringe points around
blanked points

t=X.setHoleInterpolatedPts(t,d)

32

Mark cellN=2 for d points at
overlap borders

t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies
and assembly rules

t=X.blankCells(t,bodies,AM)

Mark d fringe points around
blanked points

t=X.setHoleInterpolatedPts(t,d)

Overlap optimization
(d layers of interpolated points)

t=X.optimizeOverlap(t)
t=X.maximizeBlankedCells(t,d)

33

Interpolation data stored in the pyTree as
ZoneSubRegion_t nodes

Mark cellN=2 for d points at
overlap borders

t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies
and assembly rules

t=X.blankCells(t,bodies,AM)

Mark d fringe points around
blanked points

t=X.setHoleInterpolatedPts(t,d)

Computes overset connectivity
t=X.setInterpData(t,...)

Overlap optimization
(d layers of interpolated points)

t=X.optimizeOverlap(t)
t=X.maximizeBlankedCells(t,d)

34

Mark cellN=2 for d points at
overlap borders

t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies
and assembly rules

t=X.blankCells(t,bodies,AM)

Mark d fringe points around
blanked points

t=X.setHoleInterpolatedPts(t,d)

Computes overset connectivity
t=X.setInterpData(t,...)

Transfers
t=X.setInterpTransfer(t,...)

Overlap optimization
(d layers of interpolated points)

t=X.optimizeOverlap(t)
t=X.maximizeBlankedCells(t,d)

Test field: F=x**2+y**2 if cellN=1, else 0

Transfer of F

35

Overset connectivity

Remarks :
– Choice of location for receivers (nodes,centers)

– Works for structured and unstructured zones

– Donors are explicitly given by the user (mesh
defined as nodes, centers, with or without n
ghost cells,...)

36

IBC workflow

- Cassiopée functions can be used to perform the
geometrical preprocessing for Immersed
Boundary Method (ghost fluid method)

37

Creation of the octree mesh
o=G.octree(bodies)

Input: set of bodies defined by triangular meshes

38

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct(o)

Input: set of bodies defined by triangular meshes

39

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct(o)

Input: set of bodies defined by triangular meshes

Mark solid cells
t=X.blankCells(t,bodies)

40

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct(o)

Mark solid cells
t=X.blankCells(t,bodies)

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts(t,depth=d)

Input: set of bodies defined by triangular meshes

IBC points

Solid

41

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct(o)

Mark solid cells
t=X.blankCells(t,bodies)

Signed distance field
t=DTW.distance2Walls(t,bodies,signed=1)

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts(t,depth=d)

Input: set of bodies defined by triangular meshes

Solid surface
IBC points

42

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct(o)

Mark solid cells
t=X.blankCells(t,bodies)

Signed distance field
t=DTW.distance2Walls(t,bodies,signed=1)

Normals
t=P.computeGrad(t,'TurbulentDistance')

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts(t,depth=d)

Input: set of bodies defined by triangular meshes

Interpolated points

Wall points

IBC points

43

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct(o)

Mark solid cells
t=X.blankCells(t,bodies)

Signed distance field
t=DTW.distance2Walls(t,bodies,signed=1)

Normals
t=P.computeGrad(t,'TurbulentDistance')

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts(t,depth=d)

Computation of IBC info (~overset info)
t=X.setIBCData(t,...)

Input: set of bodies defined by triangular meshes

44

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct(o)

Mark solid cells
t=X.blankCells(t,bodies)

Signed distance field
t=DTW.distance2Walls(t,bodies,signed=1)

Normals
t=P.computeGrad(t,'TurbulentDistance')

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts(t,depth=d)

Computation of IBC info (~overset info)
t=X.setIBCData(t,...)

Computation of (u,v,w,p) at IBC points
t=X.setIBCTransfer(t,...)

Input: set of bodies defined by triangular meshes

If coupled to an IBC solver

IBC solver (computes {u,v,w,p} at each iteration)

LES simulation of the flow around a cylinder at
Re=3900, computation by M. Terracol
(ONERA/CFD & Aeroacoustics Dept), with
FUNk solver

45

Some applications

46

High-lift configuration of an aircraft

Application achieved by Christophe François and Mickaël Meunier
ONERA/Applied Aerodyn. Dept, Civil Aircrafts Unit

Mach number (slice in the spanwise direction)
RANS simulation using elsA

47

NH90 fuselage with rotor head

Application achieved by Thomas Renaud
ONERA/Applied Aerodyn Dept, Helicopters, Propellers & Turbomachinery Unit

Mach number contours near the rotor head
Unsteady RANS simulation using elsA

48

Conclusions

• Cassiopée contains a set of pre- and post-
processing functions

• All the functions operate on the same data
(Python/CGNS tree)

• This enables to quickly design solutions for
mesh generation/adaptation/assembly and
post-processing.

4949

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49

