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* Cassiopee: a set of open python modules:
* Based on python/CGNS standard

- http://www.grc.nasa.gov/IWWW)/cgns/CGNS_docs_current/python/sidstopython.pdf

* Each module compiles and can be installed
iIndependently

* Capitalization of pre- and post-processing functions

ONERA




* Developed by ONERA (2008-today):
* Used for CFD, CAA, ...

* Minor mesh modifications

* Preparation of computations
* Code coupling

* Solution post-processing

* Used by ONERA, Safran, AIRBUS, EDF

ONERA



On-line documentation:
http://elsa.onera.fr/Cassiopee/Userguide.html

* Reference documentation CaSSIup
* Tutorials e
e Galley




On-line discussion forum:

http://elsa.onera.fr/Cassiopee/Forum/index.php

* News

* Bug reports

* Scripts

* Improvements, suggestions

Cassiopée
CFD python modules

Please log in or register.
The date and time is now November 19, 2012, 08:39:11 AM

Home | Search |Help |login | register | Members List

Forum

Discussions, suggestions, bug report

General

General discussions for all modules

Converter
®
Converter module
Geom .

Geometry definition module
Transform

Block transformation module
Generator

Grid generation module
Connector

Grid connectivity module

Initiator
Solution initialization module
Post

Solution post-processing module
Dist2Walls

Waill distance computation
Distributor2

Block distribution module
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* Diffusion:
— Full version is delivered with ONERA elsA software
— 95% as Open-source (since dec. 2013)




pylree

* Full computation data stored in a tree : the
pyTree

) MeSh’ BCS’ flelds LE CGEMNsLibraryWersion
* A pyTree is an imbricated python list T gone

ZoneType

[ FlowSalution#End OfRun
— [E] GridLocation

— [E1 Density

— [E] Momentum

— [E] Momentum'y

— 2] MomentumZ

— |£] EnergystagnationDensity
— [E] cellnf

5] indicm

-] Zone.n

-] Zone.

-] Zone.?

-] Zone.d

B[] Conge

| ey I oy Iy By |
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pylree

* Cassiopeée: a set of functions:

& /
t' =1(t), where tis a pyTree [~ B CaNSLbraryVersior
. B- (] Zone
* Each function f acts on: ZoneTyps
—  Mesh coordinates N

L [£] Momentum

—  Connectivity (if relevant) _ Mamentum'y
— [£1 MomentumZ

—  FlowSolutionNodes (if any) : S
L [§) indicm

-] Zone.n

-] Zane.1

-] Zane.?

-] Zane. 3

B[] Conge

—  FlowSolutionCenters (if any)
—  BCs (if relevant)

| ey I oy Iy By |
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Mesh types
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° Usage: File Edit Options Buffers Taul Python Help
e ax % T BEMAS N E

~| H - getMinValue (pyTree) -
import Converter,PyTree as C
import Generator,PyTree az G

a = Geeart{ (00,00, (1,,1,,1,7, (11.1.1) )
> mirwval = CogetMirMaluela, 'Coordinatel') ¢ print minval

—  Python scripts "
—  GUI (tkCassiopee

- e R 4 (] CPlot - train.cgns Q@@

SRl | 40 nlncls | Displzi

File CPlot Apps Tools Help ‘ h\
MOXF@C]T 4

EL
Render_ype.
_——

View Mesh/BC  [BCWall 2
[ I | Edges

View undefined BC

selBCWith BCWall -

SetDegeneratedBC

ConnectMatch 1.e6
ConnectNearMatch | 2

FIlEmpyBCWith  [BCWall ®
rmBCOMMype  [BCWall =
Depth 2 | cellintersect —
Init cellN
Apply overlap BCs
XRay delta |1.8-10 Tol [1e-8
Surf [
Blank cells
Set Priority | 0 _.|
Optimize overlap

Create OversetHoles nodes

Ny

I *Cassiopee* - -= “ *Cassiopee* H 7] Cassiopee R.4 H =] CPlot - train.cgns ] EE D) mer. 10 sept., 10:02
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List of Cassiopée modules

* Converter/Internal [C]: conversion / handling of arrays / pyTrees
* Geom [D]: geometry/surface definition functions

* Generator [G]: mesh generation functions

* Transform [T]: mesh transformation functions

* Post [P]: CFD solution post-processing functions

* |Initiator [l]: solution initialization functions

* Connector [X]: connectivity computation

* Dist2Walls [DTW]: distance to walls computation

* Distributor2 [D2]: load balance functions

* RigidMotion [R]: rigid motion definition

* CPlot [CPlot]: graphic display of pyTrees

ONERA




Generator module [G]

Normal extrusion O NERA




Generator module [G]

FRA

Surface

2D Delaunay

orthogonal walk

Collar grids

Boolean operators on surfaces

ONERA




Generator module [G]

Mesh refinement _J

Mesh stretching o]



Generator module [G]

Octrees (generation/adaptation) » Set of structured Cartesian grids

ONERA




Transform module [T]

Projections

Mesh smoothing

Mesh merging Mesh splitting




Connector module [X]

Automatic detection of
matching boundaries

Blanking

Overset grid connectivity

|Background Grid|




Post module [P]

Field integration on
Iso-surface extraction curves/slices/surfaces

Interpolation on an extraction mesh




Dist2Walls module [DTW]

il

Signed distance field
(turbulent distance, level set)

ONERA




Application to surface offset

ONERA




Surface offset

=> Useful for blanking

OOOOO




Surface s

A

Unstructured octree
o=G.octree(s)




Surface s

Unstructured octree
o=G.octree(s)

A

Wall distance
o=DTW.distance2Wall (o, s)
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Surface s

Unstructured octree
o=G.octree(s)

Wall distance
o=DTW.distance2Wall (o, s)

Indicator field
o=C.initVars(o,formula)

A

Octree adaptation
o=G.adaptOctree(0)
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Surface s

Unstructured octree
o=G.octree(s)

Wall distance
o=DTW.distance2Wall (o, s)

Indicator field
o=C.initVars (o, formula)

Octree adaptation
o=G.adaptOctree(0)

Isosurface d=offset
s2=P.isoSurfMC(o,dist=d)

ONERA

THE FREMCH AERCSPACE LAB



Surface s

Unstructured octree
o=G.octree(s)

Wall distance
o=DTW.distance2Wall (o, s)

Indicator field
o=C.initVars (o, formula)

Octree adaptation
o=G.adaptOctree(0)

Isosurface d=offset
s2=P.isoSurfMC(o,dist=d)

A

Mesh smoothing
s2=T.smooth(s2)

ONERA



Overset connectivity

* Overset grid assembly can be performed using
« simple » separated functions :
* Blanking
* Overlap optimization
* Interpolation coefficients and donor search

* Transfer of the solution

ONERA




Overset connectivity

* A field cellN (located at nodes or centers) is
used to mark points as:

* computed (cellN=1)

* interpolated (cellN=2)
* Dblanked (cellN=0)

* Finally, overset connectivity data is stored Iin
the pyTree (donors,receivers, interpolation
method, order, coefficients)




Overset connectivity

Implemented techniques:

Blanking with Object X-Rays (Meakin)
Blanking with TETRA volumes
Overlap optimization: PEGASUS algorithm

Projection for interpolated wall points on grid
surfaces

Interpolations :

2nd order, 3rd and 5th orders (Lagrangian) for
structured grids

Moving-Least Squares (3rd order currently) for all
grid types

ONERA



2 near-body grids around cylinders,

Mark cellN=2 for 4 points at
- off-body Cartesian grid

overlap borders
t=X.applyBCOverlaps(t,d)

BE
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Interpolated (cellN=2)
Computed (cellN=1)




Mark cellN=2 for 4 points at

overlap borders
t=X.applyBCOverlaps(t,d)

A

Blank mesh w.r.t bodies

and assembly rules
t=X.blankCells(t,bodies, AM)




Mark cellN=2 for 4 points at

overlap borders
t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies

and assembly rules
t=X.blankCells(t,bodies,b AM)

A

Mark d fringe points around

blanked points
F:x.setHoleInterpolatedPts(t,d)

Blanked (cellN=0)
Interpolated (cellN=2)
Computed (cellN=1)




Mark cellN=2 for 4 points at

overlap borders
t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies

and assembly rules
t=X.blankCells(t,bodies,b AM)

Mark d fringe points around

blanked points
t=X.setHoleInterpolatedPts(t,d)

A 4

Overlap optimization

(d layers of interpolated points)
t=X.optimizeOverlap(t)
t=X.maximizeBlankedCells(t,d)

ONERA



Mark cellN=2 for 4 points at

overlap borders
t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies

and assembly rules
t=X.blankCells(t,bodies,b AM)

Mark d fringe points around

blanked points
F:x.setHoleInterpolatedPts(t,d)

Overlap optimization

(d layers of interpolated points)
t=X.optimizeOverlap(t)
t=X.maximizeBlankedCells(t,d)

A 4

Computes overset connectivity
t=X.setlInterpData(t,...)

Caantapes AL &
Fin Bl fppn Teub Hole

Interpolation data stored in the pyTree as

ZoneSubRegion_t nodes

ONERA



Mark cellN=2 for 4 points at

overlap borders
t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies

and assembly rules
t=X.blankCells(t,bodies,b AM)

Mark d fringe points around

blanked points
t=X.setHoleInterpolatedPts(t,d)

Overlap optimization

(d layers of interpolated points)
t=X.optimizeOverlap(t)
t=X.maximizeBlankedCells(t,d)

Computes overset connectivity
t=X.setlInterpData(t,...)

A

Transfers
t=X.setInterpTransfer(t,...)

Test field: F=x**2+y**2 if cellN=1, else 0

Langg
2z LY

Transfer of F




Overset connectivity

Remarks :

Choice of location for receivers (nodes,centers)
Works for structured and unstructured zones

Donors are explicitly given by the user (mesh
defined as nodes, centers, with or without n
ghost cells,...)

ONERA



IBC workflow

- Cassiopeée functions can be used to perform the
geometrical preprocessing for Immersed
Boundary Method (ghost fluid method)




Input: set of bodies defined by triangular meshes

Creation of the octree mesh
o=G.octree(bodies)

ONERA




Input: set of bodies defined by triangular meshes

Creation of the octree mesh S e e
e ) i e e e e e

v

Generation of Cartesian grids
t=G.octree2Struct (0)

ONERA




Input: set of bodies defined by triangular meshes

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct (0)

\ 4 -k
Mark solid cells i
t=X.blankCells (t,bodies) s i
. '.;I
= =
.




Input: set of bodies defined by triangular meshes

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct (0)

Mark solid cells
t=X.blankCells(t,bodies)

v

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts (t,depth=4d)

il pr— m
{ { |-|r|-|-|---|--|--|-|--|--|--|--|--|-r-lr|-|r|-lr1"'--\.|.
4L L e I T T . 1'*1-*1-1-1'“-‘ L e 4 L4 4 L 4 1 L.
-
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Solid / 0 0 0 O O 0 0 0 0 0 O O O O O O

IBC points B




Input: set of bodies defined by triangular meshes

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct (0)

Solid surface

IBC points

Mark solid cells
t=X.blankCells(t,bodies)

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts (t,depth=4d)

A 4

Signed distance field
t=DTW.distance2Walls(t,bodies,signed=1)

= iuy
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Input: set of bodies defined by triangular meshes

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct (0)

Mark solid cells
t=X.blankCells(t,bodies)

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts (t,depth=4d)

Signed distance field
t=DTW.distance2Walls(t,bodies,signed=1)

v

Normals
t=P.computeGrad(t, 'TurbulentDistance')

Interpolated points

Wall points

IBC points




Input: set of bodies defined by triangular meshes

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct (0)

Mark solid cells
t=X.blankCells (t,bodies)

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts(t,depth=4d)

Signed distance field
t=DTW.distance2Walls(t,bodies,signed=1)

Normals
t=P.computeGrad(t, 'TurbulentDistance')

v

Computation of IBC info (~overset info)
t=X.setIBCData(t,...)

ONERA




Input: set of bodies defined by triangular meshes

Creation of the octree mesh v
o=G.octree(bodies) o

Generation of Cartesian grids
t=G.octree2Struct (0)

Mark solid cells
t=X.blankCells (t,bodies)

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts(t,depth=4d)

LES simulation of the flow around a cylinder at
Re=3900, computation by M. Terracol

Signed distance field (ONERA/CFD & Aeroacoustics Dept), with
t=DTW.distance2Walls(t,bodies,signed=1) FUNK solver

Normals

t=P.computeGrad(t, 'TurbulentDistance')
! IBC solver (computes {u,v,w,p} at each iteration)

Computation of IBC info (~overset info)
t=X.setIBCData(t,...)

Computation of (u,v,w,p) at IBC points
t=X.setIBCTransfer(t,...)

\}\;Jf coupled to an IBC solver iR




Some applications

ONERA



High-lift configuration of an aircratft

[Background Grid|

Mach number (slice in the spanwise direction)
RANS simulation using elsA

Application achieved by Christophe Francgois and Mickaél Meunier
ONERA/Applied Aerodyn. Dept, Civil Aircrafts Unit

o

ONERA
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Mach number contours near the rotor head
Unsteady RANS simulation using elsA

Application achieved by Thomas Renaud
ONERA/Applied Aerodyn Dept, Helicopters, Propellers & Turbomachinery Unit

ONERA




Conclusions

Cassiopéee contains a set of pre- and post-
processing functions

All the functions operate on the same data
(Python/CGNS tree)

This enables to quickly design solutions for
mesh generation/adaptation/assembly and
post-processing.
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