) /0 T

_.é,- g—

- Cassiopeée -

CFD Advanced Set of Services In
an Open Python EnvironmEnt

= | s

"
L]
L1
o' 5 N

S. Péron, C. Benoit, S. Landier, P. Raud
ONERA - CFD & Aeroacoustics Dept

12" Symposium on Overset Composite Grids and Solution Technology
October 6-9, 2014, Georgia Institute of Technology, Atlanta

OONERA

o Y

THE FEEMNCH AERCOSPACE LAB

* Cassiopee: a set of open python modules:
* Based on python/CGNS standard

- http://www.grc.nasa.gov/IWWW)/cgns/CGNS_docs_current/python/sidstopython.pdf

* Each module compiles and can be installed
iIndependently

* Capitalization of pre- and post-processing functions

ONERA

* Developed by ONERA (2008-today):
* Used for CFD, CAA, ...

* Minor mesh modifications

* Preparation of computations
* Code coupling

* Solution post-processing

* Used by ONERA, Safran, AIRBUS, EDF

ONERA

On-line documentation:
http://elsa.onera.fr/Cassiopee/Userguide.html

* Reference documentation CaSSIup
* Tutorials e
e Galley

On-line discussion forum:

http://elsa.onera.fr/Cassiopee/Forum/index.php

* News

* Bug reports

* Scripts

* Improvements, suggestions

Cassiopée
CFD python modules

Please log in or register.
The date and time is now November 19, 2012, 08:39:11 AM

Home | Search |Help |login | register | Members List

Forum

Discussions, suggestions, bug report

General

General discussions for all modules

Converter
®
Converter module
Geom .

Geometry definition module
Transform

Block transformation module
Generator

Grid generation module
Connector

Grid connectivity module

Initiator
Solution initialization module
Post

Solution post-processing module
Dist2Walls

Waill distance computation
Distributor2

Block distribution module

Topics

17

28

22

10

16

10

Replies | Last post

42

67

40

17

12

20

11/16/12, 10:48:46 by ChristopheBenoit=0

11/07/12, 15:03:35 by ChristopheBenoit+0

Never

10/02/12, 09:47:14 by Sylvain Mouton=0

09/19/12, 09:59:32 by StephaniePeron=n

11/07/12, 15:01:42 by ChristopheBenoit=+n

Never

07/02/12, 17:35:49 by Sylvain Mouton=0

04/11/12, 09:59:40 by StephaniePeron=0

04/10/12, 10:25:09 by ChristopheBenoit+0

* Diffusion:
— Full version is delivered with ONERA elsA software
— 95% as Open-source (since dec. 2013)

pylree

* Full computation data stored in a tree : the
pyTree

) MeSh’ BCS’ flelds LE CGEMNsLibraryWersion
* A pyTree is an imbricated python list T gone

ZoneType

[FlowSalution#End OfRun
— [E] GridLocation

— [E1 Density

— [E] Momentum

— [E] Momentum'y

— 2] MomentumZ

— |£] EnergystagnationDensity
— [E] cellnf

5] indicm

-] Zone.n

-] Zone.

-] Zone.?

-] Zone.d

B[] Conge

| ey I oy Iy By |

ONERA

pylree

* Cassiopeée: a set of functions:

& /
t' =1(t), where tis a pyTree [~ B CaNSLbraryVersior
. B- (] Zone
* Each function f acts on: ZoneTyps
— Mesh coordinates N

L [£] Momentum

— Connectivity (if relevant) _ Mamentum'y
— [£1 MomentumZ

— FlowSolutionNodes (if any) : S
L [§) indicm

-] Zone.n

-] Zane.1

-] Zane.?

-] Zane. 3

B[] Conge

— FlowSolutionCenters (if any)
— BCs (if relevant)

| ey I oy Iy By |

ONERA

Mesh types

Ny

=
= =
=]
Z=228 z
= 1T !
&= =
NS aESSREEE Sl i
SR S Easn
.| =< = -
<>: Eilgy NN e g]
><] ANy ey
inns2Al Eip=dl! =
~ o B+
- <l L]
=<
T 4 P~
< . [
[P T
e TS
as=n Z >-> .
- TETRA
=S
SSEE AT g>)
et T §
S=u e =
= P ><§§
SSES e
= T
!)>)

STRUCT

BAR
TRI

QUAD PYRA

ONERA

° Usage: File Edit Options Buffers Taul Python Help
e ax % T BEMAS N E

~| H - getMinValue (pyTree) -
import Converter,PyTree as C
import Generator,PyTree az G

a = Geeart{ (00,00, (1,,1,,1,7, (11.1.1))
> mirwval = CogetMirMaluela, 'Coordinatel') ¢ print minval

— Python scripts "
— GUI (tkCassiopee

- e R 4 (] CPlot - train.cgns Q@@

SRl | 40 nlncls | Displzi

File CPlot Apps Tools Help ‘ h\
MOXF@C]T 4

EL
Render_ype.
_——

View Mesh/BC [BCWall 2
[I | Edges

View undefined BC

selBCWith BCWall -

SetDegeneratedBC

ConnectMatch 1.e6
ConnectNearMatch | 2

FIlEmpyBCWith [BCWall ®
rmBCOMMype [BCWall =
Depth 2 | cellintersect —
Init cellN
Apply overlap BCs
XRay delta |1.8-10 Tol [1e-8
Surf [
Blank cells
Set Priority | 0 _.|
Optimize overlap

Create OversetHoles nodes

Ny

I *Cassiopee* - -= “ *Cassiopee* H 7] Cassiopee R.4 H =] CPlot - train.cgns] EE D) mer. 10 sept., 10:02

S SN T

List of Cassiopée modules

* Converter/Internal [C]: conversion / handling of arrays / pyTrees
* Geom [D]: geometry/surface definition functions

* Generator [G]: mesh generation functions

* Transform [T]: mesh transformation functions

* Post [P]: CFD solution post-processing functions

* |Initiator [l]: solution initialization functions

* Connector [X]: connectivity computation

* Dist2Walls [DTW]: distance to walls computation

* Distributor2 [D2]: load balance functions

* RigidMotion [R]: rigid motion definition

* CPlot [CPlot]: graphic display of pyTrees

ONERA

Generator module [G]

Normal extrusion O NERA

Generator module [G]

FRA

Surface

2D Delaunay

orthogonal walk

Collar grids

Boolean operators on surfaces

ONERA

Generator module [G]

Mesh refinement _J

Mesh stretching o]

Generator module [G]

Octrees (generation/adaptation) » Set of structured Cartesian grids

ONERA

Transform module [T]

Projections

Mesh smoothing

Mesh merging Mesh splitting

Connector module [X]

Automatic detection of
matching boundaries

Blanking

Overset grid connectivity

|Background Grid|

Post module [P]

Field integration on
Iso-surface extraction curves/slices/surfaces

Interpolation on an extraction mesh

Dist2Walls module [DTW]

il

Signed distance field
(turbulent distance, level set)

ONERA

Application to surface offset

ONERA

Surface offset

=> Useful for blanking

OOOOO

Surface s

A

Unstructured octree
o=G.octree(s)

Surface s

Unstructured octree
o=G.octree(s)

A

Wall distance
o=DTW.distance2Wall (o, s)

nnnnnnnnnnnnnnnnnnn

Surface s

Unstructured octree
o=G.octree(s)

Wall distance
o=DTW.distance2Wall (o, s)

Indicator field
o=C.initVars(o,formula)

A

Octree adaptation
o=G.adaptOctree(0)

T

e |

ﬁ%%‘ =#£¢

b g
_!%WJ—‘!?'Eﬂ!ha“!‘-E.‘mM .

Surface s

Unstructured octree
o=G.octree(s)

Wall distance
o=DTW.distance2Wall (o, s)

Indicator field
o=C.initVars (o, formula)

Octree adaptation
o=G.adaptOctree(0)

Isosurface d=offset
s2=P.isoSurfMC(o,dist=d)

ONERA

THE FREMCH AERCSPACE LAB

Surface s

Unstructured octree
o=G.octree(s)

Wall distance
o=DTW.distance2Wall (o, s)

Indicator field
o=C.initVars (o, formula)

Octree adaptation
o=G.adaptOctree(0)

Isosurface d=offset
s2=P.isoSurfMC(o,dist=d)

A

Mesh smoothing
s2=T.smooth(s2)

ONERA

Overset connectivity

* Overset grid assembly can be performed using
« simple » separated functions :
* Blanking
* Overlap optimization
* Interpolation coefficients and donor search

* Transfer of the solution

ONERA

Overset connectivity

* A field cellN (located at nodes or centers) is
used to mark points as:

* computed (cellN=1)

* interpolated (cellN=2)
* Dblanked (cellN=0)

* Finally, overset connectivity data is stored Iin
the pyTree (donors,receivers, interpolation
method, order, coefficients)

Overset connectivity

Implemented techniques:

Blanking with Object X-Rays (Meakin)
Blanking with TETRA volumes
Overlap optimization: PEGASUS algorithm

Projection for interpolated wall points on grid
surfaces

Interpolations :

2nd order, 3rd and 5th orders (Lagrangian) for
structured grids

Moving-Least Squares (3rd order currently) for all
grid types

ONERA

2 near-body grids around cylinders,

Mark cellN=2 for 4 points at
- off-body Cartesian grid

overlap borders
t=X.applyBCOverlaps(t,d)

BE
A T
O e

Interpolated (cellN=2)
Computed (cellN=1)

Mark cellN=2 for 4 points at

overlap borders
t=X.applyBCOverlaps(t,d)

A

Blank mesh w.r.t bodies

and assembly rules
t=X.blankCells(t,bodies, AM)

Mark cellN=2 for 4 points at

overlap borders
t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies

and assembly rules
t=X.blankCells(t,bodies,b AM)

A

Mark d fringe points around

blanked points
F:x.setHoleInterpolatedPts(t,d)

Blanked (cellN=0)
Interpolated (cellN=2)
Computed (cellN=1)

Mark cellN=2 for 4 points at

overlap borders
t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies

and assembly rules
t=X.blankCells(t,bodies,b AM)

Mark d fringe points around

blanked points
t=X.setHoleInterpolatedPts(t,d)

A 4

Overlap optimization

(d layers of interpolated points)
t=X.optimizeOverlap(t)
t=X.maximizeBlankedCells(t,d)

ONERA

Mark cellN=2 for 4 points at

overlap borders
t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies

and assembly rules
t=X.blankCells(t,bodies,b AM)

Mark d fringe points around

blanked points
F:x.setHoleInterpolatedPts(t,d)

Overlap optimization

(d layers of interpolated points)
t=X.optimizeOverlap(t)
t=X.maximizeBlankedCells(t,d)

A 4

Computes overset connectivity
t=X.setlInterpData(t,...)

Caantapes AL &
Fin Bl fppn Teub Hole

Interpolation data stored in the pyTree as

ZoneSubRegion_t nodes

ONERA

Mark cellN=2 for 4 points at

overlap borders
t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies

and assembly rules
t=X.blankCells(t,bodies,b AM)

Mark d fringe points around

blanked points
t=X.setHoleInterpolatedPts(t,d)

Overlap optimization

(d layers of interpolated points)
t=X.optimizeOverlap(t)
t=X.maximizeBlankedCells(t,d)

Computes overset connectivity
t=X.setlInterpData(t,...)

A

Transfers
t=X.setInterpTransfer(t,...)

Test field: F=x**2+y**2 if cellN=1, else 0

Langg
2z LY

Transfer of F

Overset connectivity

Remarks :

Choice of location for receivers (nodes,centers)
Works for structured and unstructured zones

Donors are explicitly given by the user (mesh
defined as nodes, centers, with or without n
ghost cells,...)

ONERA

IBC workflow

- Cassiopeée functions can be used to perform the
geometrical preprocessing for Immersed
Boundary Method (ghost fluid method)

Input: set of bodies defined by triangular meshes

Creation of the octree mesh
o=G.octree(bodies)

ONERA

Input: set of bodies defined by triangular meshes

Creation of the octree mesh S e e
e) i e e e e e

v

Generation of Cartesian grids
t=G.octree2Struct (0)

ONERA

Input: set of bodies defined by triangular meshes

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct (0)

\ 4 -k
Mark solid cells i
t=X.blankCells (t,bodies) s i
. '.;I
= =
.

Input: set of bodies defined by triangular meshes

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct (0)

Mark solid cells
t=X.blankCells(t,bodies)

v

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts (t,depth=4d)

il pr— m
{ { |-|r|-|-|---|--|--|-|--|--|--|--|--|-r-lr|-|r|-lr1"'--\.|.
4L L e I T T . 1'*1-*1-1-1'“-‘ L e 4 L4 4 L 4 1 L.
-
i | I | P R P | H i | B N | i .-'.-;‘h?.h.
-----**‘

Solid / 0 0 0 O O 0 0 0 0 0 O O O O O O

IBC points B

Input: set of bodies defined by triangular meshes

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct (0)

Solid surface

IBC points

Mark solid cells
t=X.blankCells(t,bodies)

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts (t,depth=4d)

A 4

Signed distance field
t=DTW.distance2Walls(t,bodies,signed=1)

= iuy

ONERA

Input: set of bodies defined by triangular meshes

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct (0)

Mark solid cells
t=X.blankCells(t,bodies)

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts (t,depth=4d)

Signed distance field
t=DTW.distance2Walls(t,bodies,signed=1)

v

Normals
t=P.computeGrad(t, 'TurbulentDistance')

Interpolated points

Wall points

IBC points

Input: set of bodies defined by triangular meshes

Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids
t=G.octree2Struct (0)

Mark solid cells
t=X.blankCells (t,bodies)

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts(t,depth=4d)

Signed distance field
t=DTW.distance2Walls(t,bodies,signed=1)

Normals
t=P.computeGrad(t, 'TurbulentDistance')

v

Computation of IBC info (~overset info)
t=X.setIBCData(t,...)

ONERA

Input: set of bodies defined by triangular meshes

Creation of the octree mesh v
o=G.octree(bodies) o

Generation of Cartesian grids
t=G.octree2Struct (0)

Mark solid cells
t=X.blankCells (t,bodies)

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts(t,depth=4d)

LES simulation of the flow around a cylinder at
Re=3900, computation by M. Terracol

Signed distance field (ONERA/CFD & Aeroacoustics Dept), with
t=DTW.distance2Walls(t,bodies,signed=1) FUNK solver

Normals

t=P.computeGrad(t, 'TurbulentDistance')
! IBC solver (computes {u,v,w,p} at each iteration)

Computation of IBC info (~overset info)
t=X.setIBCData(t,...)

Computation of (u,v,w,p) at IBC points
t=X.setIBCTransfer(t,...)

\}\;Jf coupled to an IBC solver iR

Some applications

ONERA

High-lift configuration of an aircratft

[Background Grid|

Mach number (slice in the spanwise direction)
RANS simulation using elsA

Application achieved by Christophe Francgois and Mickaél Meunier
ONERA/Applied Aerodyn. Dept, Civil Aircrafts Unit

o

ONERA

i ST A
RS TARETT

harae

Mach number contours near the rotor head
Unsteady RANS simulation using elsA

Application achieved by Thomas Renaud
ONERA/Applied Aerodyn Dept, Helicopters, Propellers & Turbomachinery Unit

ONERA

Conclusions

Cassiopéee contains a set of pre- and post-
processing functions

All the functions operate on the same data
(Python/CGNS tree)

This enables to quickly design solutions for
mesh generation/adaptation/assembly and
post-processing.

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49

