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 Cassiopée: a set of open python modules:
 Based on python/CGNS standard

− http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/python/sidstopython.pdf

 Each module compiles and can be installed 
independently

 Capitalization of pre- and post-processing functions
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 Developed by ONERA (2008-today):
 Used for CFD, CAA, ...

• Minor mesh modifications

• Preparation of computations

• Code coupling

• Solution post-processing
 Used by ONERA, Safran, AIRBUS, EDF
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On-line documentation:
http://elsa.onera.fr/Cassiopee/Userguide.html

 Reference documentation
 Tutorials
 Gallery



  

On-line discussion forum:
http://elsa.onera.fr/Cassiopee/Forum/index.php

 News
 Bug reports
 Scripts
 Improvements, suggestions



  

 Diffusion:
– Full version is delivered with ONERA elsA software

– 95% as Open-source (since dec. 2013)
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pyTree

 Full computation data stored in a tree : the 
pyTree
 Mesh, BCs, fields...

 A pyTree is an imbricated python list
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pyTree

 Cassiopée: a set of functions:

               t' = f(t), where t is a pyTree
    Each function f acts on:

– Mesh coordinates

– Connectivity (if relevant)

– FlowSolutionNodes (if any)

– FlowSolutionCenters (if any)

– BCs (if relevant)
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Mesh types

STRUCT

HEXA TETRA

PYRA PENTA

BAR
TRI

QUAD

NGON
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• Usage:

– Python scripts

– GUI (tkCassiopee)
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List of Cassiopée modules

 Converter/Internal [C]: conversion / handling of arrays / pyTrees

 Geom [D]: geometry/surface definition functions

 Generator [G]: mesh generation functions

 Transform [T]: mesh transformation functions

 Post [P]: CFD solution post-processing functions

 Initiator [I]: solution initialization functions

 Connector [X]: connectivity computation

 Dist2Walls [DTW]: distance to walls computation

 Distributor2 [D2]: load balance functions

 RigidMotion [R]: rigid motion definition

 CPlot [CPlot]: graphic display of pyTrees 
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TFIs

Normal extrusion

Generator module [G]
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Surface 
orthogonal walk

Boolean operators on surfaces

2D Delaunay

Generator module [G]

Collar grids
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Mesh refinement

Generator module [G]

Mesh stretching
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Octrees (generation/adaptation)

Generator module [G]

Set of structured Cartesian grids
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Projections

Mesh smoothing

Mesh merging

Transform module [T]

Mesh splitting
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Connector module [X]

Blanking

Overset grid connectivity

Automatic detection of 
matching boundaries
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Post module [P]

Interpolation on an extraction mesh 

Iso-surface extraction
Field integration on 
curves/slices/surfaces
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Dist2Walls module [DTW]

Signed distance field
(turbulent distance, level set)
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Application to surface offset
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Surface offset

=> Useful for blanking
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Surface s

Unstructured octree
o=G.octree(s)
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Surface s

Unstructured octree
o=G.octree(s)

Wall distance
o=DTW.distance2Wall(o,s)
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Surface s

Unstructured octree
o=G.octree(s)

Wall distance
o=DTW.distance2Wall(o,s)

Octree adaptation
o=G.adaptOctree(o)

Indicator field 
o=C.initVars(o,formula)
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Surface s

Unstructured octree
o=G.octree(s)

Wall distance
o=DTW.distance2Wall(o,s)

Octree adaptation
o=G.adaptOctree(o)

Isosurface d=offset
s2=P.isoSurfMC(o,dist=d)

Indicator field 
o=C.initVars(o,formula)
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Surface s

Unstructured octree
o=G.octree(s)

Wall distance
o=DTW.distance2Wall(o,s)

Octree adaptation
o=G.adaptOctree(o)

Isosurface d=offset
s2=P.isoSurfMC(o,dist=d)

Mesh smoothing
s2=T.smooth(s2)

Indicator field 
o=C.initVars(o,formula)
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Overset connectivity

  Overset grid assembly can be performed using 
« simple » separated functions :

 Blanking
 Overlap optimization
 Interpolation coefficients and donor search
 Transfer of the solution
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Overset connectivity

  A field cellN (located at nodes or centers) is 
used to mark points as:

 computed (cellN=1)
 interpolated (cellN=2)
 blanked (cellN=0)

  Finally, overset connectivity data is stored in 
the pyTree (donors,receivers, interpolation 
method, order, coefficients)

28



 

Overset connectivity

Implemented techniques:
– Blanking with Object X-Rays (Meakin)

– Blanking with TETRA volumes

– Overlap optimization: PEGASUS algorithm

– Projection for interpolated wall points on grid 
surfaces

– Interpolations : 
•  2nd order, 3rd and 5th orders (Lagrangian) for 

structured grids

• Moving-Least Squares (3rd order currently) for all 
grid types
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Mark cellN=2 for d points at 
overlap borders

t=X.applyBCOverlaps(t,d)

2 near-body grids around cylinders, 
off-body Cartesian grid

Interpolated (cellN=2)
Computed (cellN=1)
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Bodies 

Mark cellN=2 for d points at 
overlap borders

t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies 
and assembly rules 

t=X.blankCells(t,bodies,AM)
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Blanked (cellN=0)
Interpolated (cellN=2)
Computed (cellN=1)

Mark cellN=2 for d points at 
overlap borders

t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies 
and assembly rules 

t=X.blankCells(t,bodies,AM)

Mark d fringe points around 
blanked points

t=X.setHoleInterpolatedPts(t,d)
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Mark cellN=2 for d points at 
overlap borders

t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies 
and assembly rules 

t=X.blankCells(t,bodies,AM)

Mark d fringe points around 
blanked points

t=X.setHoleInterpolatedPts(t,d)

Overlap optimization 
(d layers of interpolated points)

t=X.optimizeOverlap(t)
t=X.maximizeBlankedCells(t,d)
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Interpolation data stored in the pyTree as 
ZoneSubRegion_t nodes

Mark cellN=2 for d points at 
overlap borders

t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies 
and assembly rules 

t=X.blankCells(t,bodies,AM)

Mark d fringe points around 
blanked points

t=X.setHoleInterpolatedPts(t,d)

Computes overset connectivity
t=X.setInterpData(t,...)

Overlap optimization 
(d layers of interpolated points)

t=X.optimizeOverlap(t)
t=X.maximizeBlankedCells(t,d)
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Mark cellN=2 for d points at 
overlap borders

t=X.applyBCOverlaps(t,d)

Blank mesh w.r.t bodies 
and assembly rules 

t=X.blankCells(t,bodies,AM)

Mark d fringe points around 
blanked points

t=X.setHoleInterpolatedPts(t,d)

Computes overset connectivity
t=X.setInterpData(t,...)

Transfers
t=X.setInterpTransfer(t,...)

Overlap optimization 
(d layers of interpolated points)

t=X.optimizeOverlap(t)
t=X.maximizeBlankedCells(t,d)

Test field: F=x**2+y**2 if cellN=1, else 0

Transfer of F
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Overset connectivity

Remarks :
– Choice of location for receivers (nodes,centers)

– Works for structured and unstructured zones

– Donors are explicitly given by the user (mesh 
defined as nodes, centers, with or without n 
ghost cells,...)
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IBC workflow

- Cassiopée functions can be used to perform the 
geometrical preprocessing for Immersed 
Boundary Method (ghost fluid method)   
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Creation of the octree mesh
o=G.octree(bodies)

Input: set of bodies defined by triangular meshes
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Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids 
t=G.octree2Struct(o)

Input: set of bodies defined by triangular meshes
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Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids 
t=G.octree2Struct(o)

Input: set of bodies defined by triangular meshes

Mark solid cells
t=X.blankCells(t,bodies)
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Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids 
t=G.octree2Struct(o)

Mark solid cells
t=X.blankCells(t,bodies)

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts(t,depth=d)

Input: set of bodies defined by triangular meshes

IBC points

Solid 
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Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids 
t=G.octree2Struct(o)

Mark solid cells
t=X.blankCells(t,bodies)

Signed distance field
t=DTW.distance2Walls(t,bodies,signed=1)

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts(t,depth=d)

Input: set of bodies defined by triangular meshes

Solid surface
IBC points
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Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids 
t=G.octree2Struct(o)

Mark solid cells
t=X.blankCells(t,bodies)

Signed distance field
t=DTW.distance2Walls(t,bodies,signed=1)

Normals
t=P.computeGrad(t,'TurbulentDistance')

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts(t,depth=d)

Input: set of bodies defined by triangular meshes

Interpolated points

Wall points

IBC points
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Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids 
t=G.octree2Struct(o)

Mark solid cells
t=X.blankCells(t,bodies)

Signed distance field
t=DTW.distance2Walls(t,bodies,signed=1)

Normals
t=P.computeGrad(t,'TurbulentDistance')

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts(t,depth=d)

Computation of IBC info (~overset info)
t=X.setIBCData(t,...)

Input: set of bodies defined by triangular meshes
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Creation of the octree mesh
o=G.octree(bodies)

Generation of Cartesian grids 
t=G.octree2Struct(o)

Mark solid cells
t=X.blankCells(t,bodies)

Signed distance field
t=DTW.distance2Walls(t,bodies,signed=1)

Normals
t=P.computeGrad(t,'TurbulentDistance')

Defined d layers of IBC cells (d < 0 : inside)
t=X.setHoleInterpolatedPts(t,depth=d)

Computation of IBC info (~overset info)
t=X.setIBCData(t,...)

Computation of (u,v,w,p) at IBC points
t=X.setIBCTransfer(t,...)

Input: set of bodies defined by triangular meshes

If coupled to an IBC solver

IBC solver (computes {u,v,w,p} at each iteration)

LES simulation of the flow around a cylinder at 
Re=3900, computation by M. Terracol 
(ONERA/CFD & Aeroacoustics Dept), with 
FUNk solver

45



 

Some applications
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High-lift configuration of an aircraft

Application achieved by Christophe François and Mickaël Meunier 
ONERA/Applied Aerodyn. Dept, Civil Aircrafts Unit

Mach number (slice in the spanwise direction)
RANS simulation using elsA
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NH90 fuselage with rotor head 

Application achieved by Thomas Renaud 
ONERA/Applied Aerodyn Dept, Helicopters, Propellers & Turbomachinery Unit

Mach number contours near the rotor head
Unsteady RANS simulation using elsA
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Conclusions

• Cassiopée contains a set of pre- and post-
processing functions

• All the functions operate on the same data 
(Python/CGNS tree)

• This enables to quickly design solutions for 
mesh generation/adaptation/assembly and 
post-processing.
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