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The D8 Aircraft Concept
• “Double-Bubble” 

• Fundamental Aero program  

–Fixed-wing 

–N+3 advanced vehicle configuration 

•Lower fuel burn, lower noise, reduce 
emissions 

• 180 passengers 

• 3000 nmi range 

• 118 ft span 

• Boeing 737/A320 class  

• Lifting fuselage, pi-tail 

• Flush-mounted engines
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B737—>D8 
 Our Focus: BLI
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Nacelle

Fan

• Boundary Layer Ingesting (BLI) engines for propulsive efficiency 

–Thicker boundary layer in the rear 

–Designed for M=0.6 flow around engine inlet area 

–Distortion tolerant fan 

–High bypass ratio (~20) 

• Lower engine-out yaw 

–Reduced vertical tail size 

•Noise shield
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Embedded Rear-Mounted Engines



Goals and Approach
•Goal: Quantify benefits of boundary layer and wake ingestion for the 
D8. 

• Approach: 

–Overset CFD using CGT and Overflow-2. 

–CFD validation 

•NASA LaRC 14x22 WT data for a 1:11 scale model. 

–Quantifying the BLI and wake ingestion benefit: 

•Direct Comparison between: 

–Efficient conventional (podded nacelle) configuration. 

–BLI (integrated nacelle) configuration.
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WT Configurations
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Configuration Details
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•WT runs at 70 mph, Re_c = 570,000. 

–lower-speed and Re compared to full-size at M=0.72. 

• 1:11 Scale powered model. 

•Wing designed for low Mach, low Re. 

• Same wings. 

•Most of fuselage is the same. 

• Same propulsors plug into both podded and integrated 
configuration empennage sections.



D8 Model

•Computational model 

–1:11 scale, Half body 

–No mounting hardware 

–Inviscid walls
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• Larc 14x22 WT model 

–1:11 scale, Full body 

–Mounting hardware controls AoA



Computational Configurations
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Fuselage and Wing Grids
• Remain the same
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π-tail, Nacelle, Pylon
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WT Grids
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Stagna8on	
  Pressure	
  Loss

• Inviscid wall boundary condition. 

• 7 grids (4 wall grids, 3 core grids) + box grids. 

•Mach and Re number matched at pitot probe.



Computational Mesh
•Chimera Grid Tools 

–Overset surface and volume mesh 

•Same grids for forward fuselage, wing, and WT. 

–Unpowered: 36 grids, 113 Million points. 

–Podded: 49 grids, 130 Million points. 

–Integrated: 64 grids, 135 Million points. 

–y+ ≈ 0.7.
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CFD Solver
•OVERFLOW 

–3D, RANS solver for overset structured grids. 

–Diagonalized approximate factorization Scheme. 

–2nd order central difference + artificial dissipation. 

–Matrix dissipation. 

–RANS SST turbulence model. 

• Flow Conditions 

–Mach=0.088. 

–Re = 44000/in.
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Fan Model and its Effect
• Actuator disk 

–Uniform pressure jump. 

• Four cases with increasing pressure jump settings 

• For both podded and integrated. 

• Integrated sees a lower mass flow.
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Typical Convergence
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•Simulations without fans. 

•Alpha sweep. 

•Compare to Wind Tunnel (WT) test data. 

•Iterations to match Mach & Re at pitot 
probe.
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Simulated	
  Cruise
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Propulsor Inlet flow Comparison
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Propulsor Exit flow Comparison
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•Conventional: wake/BL energy lost. 

!

!

• BLI: Fuselage boundary layer ingested by propulsor. 

–> Reduced viscous dissipation in combined wake + jet. 

–> Reduced flow power required from propulsor. 

!

!

•Use Power-balance method (Drela, 2009, AIAA J.).

BLI
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Power Balance Method
•Mechanical energy sources and sinks. 

!

!

!

!

!

• Power-in = Dissipation.
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BLI Benefit
•Compare mechanical flow power: 

!

–Power transmitted by propulsor to the flow. 

• Savings in power required: integrated vs. podded.
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Benefit of BLI (Computational)
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Wake Ingestion

• Previous podded nacelle 
almost ingested the wing 
wake 

• Can we move the nacelle 
out of the way? 

• What is the effect of 
nacelle movement on BLI?

Baseline: WT test model



Test Matrix
• Deflect the nacelle up and 

down (-20°,-10°,0°,10°,20°,30°). 

• Power setting: closest to WT 
test setting. 

• Keep the outboard position and 
toe angle unchanged. 

• Compare to the baseline case. 

• Δ=D1-D0=D0(1/cos θ-1). 

• Translate by Δ, then rotate by θ.



Stagnation Pressure Loss (φ=0°) 
prior to entering the nacelle



Stagnation Pressure Loss (φ=30°) 
prior to entering the nacelle



Stagnation Pressure Loss (φ=-20°) 
behind the nacelle
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Concluding Remarks
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• BLI benefit is:  

–9% less Mechanical flow power with BLI 

•Wake ingestion benefit is: 

–0.8% less Mechanical flow power with wake ingestion 

• BLI has the potential to reduce fuel burn 

•Wake Ingestion is not worth pursuing 

• Future Work: 

–Full scale aircraft at cruise Ma, and Re. 

–Other operating conditions 

–Improve actuator disk model
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