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Second-order wave equations are common in many fields of science
and engineering

e scalar wave propagation
* e.g. acoustics
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* systems of simple wave equations
* e.g. electromagnetics
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Second-order wave equations are common in many fields of science
and engineering

e elastic wave equation
* e.g. seismic waves
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 Einstein field equations
* e.g. gravity waves
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For many problems numerical dissipation mechanisms are needed, and the
current state of the art for the SOS is unsatisfactory

 Stability against small perturbations
* l[ow order terms in the mathematical model
* interpolation from overlapping grids
* nonlinearity

e Discontinuities
 discontinuous material coefficients
* source terms with abrupt changes
e discontinuous exact solutions

* For second-order systems, the current state of the art is ad hoc addition of
numerical dissipation

* coefficients chosen experimentally or with “expert judgement”

* see e.g. Henshaw 2006, Hagstrom and Hagstrom 2012

* One alternative is to transform to first-order form and use “upwind methods”
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Upwind methods for first-order hyperbolic systems are powerful tools that
have seen extensive use and development

e CIR characteristic scheme (Courant, Isaacson and Rees 1952)

e Godunov explicitly incorporated upwinding (Godunov 1959)

* The key idea is the local incorporation of an exact solution
* the effect is to introduce artificial viscosity (Christensen 1990)

* Since then the technique has grown
* flux-corrected transport (Boris and Book 1983)
e piecewise parabolic method (Colella and Woodward1984)
* high-resolution Godunov (vanLeer 1989, Kolgan 2010)
 discontinuous Galerkin (Cockburn and Shu 1989)
e essentially nonoscillatory (Harten 1983)
e weighted essentially nonoscillatory (Jiang et. al. 1996)

* Despite the vast literature on upwind methods, there appeared to be no attempt to
generalize to wave equations in second-order form
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There are many good reasons to consider second-order wave equations
directly rather than simply converting to first-order form

e Converting from second- to first-order form generally increases the system size
e from ~3 to ~6 for Maxwell’'s equations (Henshaw 20006)
e from ~3 to ~10 for Elasticity (Appelo et. al. 2012)

e Converting to first-order form introduces constraint equations (e.g. St. Venant)
 constraints are challenging in the context of discretization (Kreiss et. al. 2007)

* The Laplacian is naturally self-adjoint
* leads to naturally compact discretizations

* Many systems occur naturally in second-order form (e.g. acoustics, elasticity, EFE)
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In this talk we are primarily concerned with stability of wave equations on
overlapping grids which has historically been challenging

» Consider the second order wave equation on a semi-infinite domain x€ (—o0, b|

* Discretize on an overlapping grid using second order centered differences
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* Define stability to mean that the solution remains uniformly bounded in time

* Normal mode theory leads to the following eigenvalue problem
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Wave equation stability on overlapping grids

 Normal mode theory for the second order system says
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Wave equation stability on overlapping grids
 Normal mode theory for the second order system says

» Solutions to the eigenvalue problem grow as et
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Wave equation stability on overlapping grids

 Normal mode theory for the second order system says
» Solutions to the eigenvalue problem grow as et

o If Re(s) > 0, then by our definition the discretization is unstable
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Wave equation stability on overlapping grids

 Normal mode theory for the second order system says
» Solutions to the eigenvalue problem grow as et
o If Re(s) > 0, then by our definition the discretization is unstable
e Assume a solution with parameters (s, h1, ho, 7, a, 3, N)

* Then there is a second solution with parameters (57, b1/, ha/7y, 70, B, N)
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Wave equation stability on overlapping grids

 Normal mode theory for the second order system says
» Solutions to the eigenvalue problem grow as et
o If Re(s) > 0, then by our definition the discretization is unstable
e Assume a solution with parameters (s, h1, ho, 7, a, 3, N)
e Then there is a second solution with parameters (57, h1/v, ha/v,7, o, 8, N)

e [t is possible to find solutions numerically ... e.g.

hi=1, hy~ 14445, r=2, a~1.4408, B~12527, p=1, q=3, N=7T
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Wave equation stability on overlapping grids

 Normal mode theory for the second order system says
» Solutions to the eigenvalue problem grow as et
o If Re(s) > 0, then by our definition the discretization is unstable
e Assume a solution with parameters (s, h1, ho, 7, a, 3, N)
e Then there is a second solution with parameters (57, h1/v, ha/v,7, o, 8, N)

e [t is possible to find solutions numerically ... e.g.

hi=1, hy~ 14445, r=2, a~1.4408, B~12527, p=1, q=3, N=7T

e Therefore the artificial dissipation parameter must grow with the mesh ... i.e.

0°u  0°u  aq , 0% \/20u
(_ & (9332)

a2~ 0z h B
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Wave equation stability on overlapping grids

 Normal mode theory for the second order system says
» Solutions to the eigenvalue problem grow as et
o If Re(s) > 0, then by our definition the discretization is unstable
e Assume a solution with parameters (s, h1, ho, 7, a, 3, N)
e Then there is a second solution with parameters (57, h1/v, ha/v,7, o, 8, N)

e [t is possible to find solutions numerically ... e.g.

hi=1, hy~ 14445, r=2, a~1.4408, B~12527, p=1, q=3, N=7T

e Therefore the artificial dissipation parameter must grow with the mesh ... i.e.

0°u  0°u  aq , 0% \/20u
(_ & (9332)

a2~ 0z h B

e A similar analysis is done for the FOS

* The upwind dissipation has the correct form and naturally stabilizes the scheme
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Now a reminder of how upwinding works for the advection equation (first-

order formulation)

e The governing equations are

* Using characteristics

q(x,7) =q", forx—cr € (x

i— L
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e Averaging the exact solution at the next time level gives
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We can follow a similar procedure for the second-order wave equation

e The governing equations are

0%u  ,0%u P
— =", —00 < T < 00,
Ot? Ox?
ou
u(zx,0) = ug(x), E(x,()) = v(z,0) = vo(x)
e Using d’Alembert’s solution /“.V/U;
uj}i_l/ o o
1 1 r+cT i;l
ul@,7) = 2 (uo(@ + ) + uo(w —c7)) + 2_(3/ vo(&)d ;c.= s, Tl g1 Tz @il :z:.: 3
v(z, ) = %u(x, T) = g (ug(z + 1) —ug(x — c7)) + % (vo(x + ¢7) — vo(x — 7))
* Averaging at the next time level gives
2 A 42 2 2
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This method is |st order accurate and behaves very well for hard problems

* Results for a top-hat initial condition (note the delta functions in V)
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A comparison with standard centered scheme illustrates the effect of upwinding

e The centered scheme is
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In order to be practical (higher order, higher dimensions, variable coefficients,
nonlinearity, etc ...),a more general construction is needed

e Start by recasting (note this equation is still second-order in space)

HEEARN

* Integrate the v equation in time

L 92
v(z,t) =v(z,0) + ¢ 0 w(xﬂ') dr
e Define exact flux function so that
0%u . . Ou
@(x,t):Dij(m—?,t), f($7t):D$%(m7t)

* where D, is defined to satisfy

Se@) = Dy (Dawte - )
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The incorporation of upwinding comes in the definition of the numerical flux
function using d’Alembert’s solution

e Recall that the d’Alembert solution is

Tr+cT
(u(x + cr,t) +u(x —c7,t)) + E / v(€,t)dE

1
t 7)==
u(z,t+ 1) > 2|

* Now take 7 — 0, assume u is smooth, and differentiate in space

e This exact local solution is embedded into the definition of the flux

1 tn—l—T)

57

. he ou . 1 . _
f(x+7,t + 7) EDx%(xH%,t —|—’7')—|—2—C vaJr(xH%,t +7) — Dyv™ (T4

e Cauchy-Kowalewski to get a single step high-order scheme

* M-point Gaussian quadrature is used to evaluate the fluxes
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These single-step high-order accurate schemes can be compactly expressed

e For example, the fully discrete 4th order scheme is

1 1 1
L P L PAL Gk =1 k1 = = ko = — kg = —
wT = L At” 4 A G, (k :1 k1 :1 ko = L k3 = i)
i ’L 7, T e 6 12" 7 18
where
Gi(ky) = kDU + ky AthjL)vaer AA2(DyD_)2u %CQAt?’(D D_)2y;

5k'o kg kl kS
h2 — —ZcAt?hS ) (DL D_)3v; —ZCcAth? + Z2EAh, | (DLD_)3u;
h2
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* Furthermore, the modified equation is found to be
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The fourth order scheme can be analyzed using normal modes

Theorem: The fourth-order upwind method is 4th order accurate and stable under the

restriction At
A= ——A, Ag ~ 1.09

where A, is the smallest root of

4A5 — 14A5 — 12A3 + 12A7 +15 =0

For small wave numbers the amplification factor is easily seen to be

. L. L L A
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The generating procedure generalizes to multiple dimensions and curvilinear grids

e Consider a constant coefficient wave equation in d dimensions
0°u
ot?
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* On a curvilinear grid defined by x = G(r) the operator can be written

Z > o or ( Am§u>

mlnl

e where
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As before, upwinding is incorporated by embedding the d’Alembert solution

 First we recast the system to explicitly identify a flux

d

0 ful _fi) 1y~ 0 0
ot i) — 0] T J = By, [Son_, JAT 2L

m=1

* Now we identify exact differential difference formulae, e.g.

n+1 n At : 1 Atv n
a(x,t" ) = a(x, t") + = > Dyr, frp (X, 8" + 1) dT
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Time-step stability bounds in high dimension are derived using hormal modes

e The actual stability bounds are quite complex so we instead fit simplified bounds

d
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* For high-order, we can also increase the maximal stable time-step by leveraging
the observation that the upwind dissipation need not be time accurate

approximate stability regions
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Before moving on to some numerical results, lets make a few observations

e One aspect | did not talk about is nonlinear limiting (high-resolution)
* this has been explored for 2nd order schemes using MinMod
* there is a lot of additional exploration that could be done here

* The upwind flux is necessary for stability for all but the 2nd order scheme

* Except for 1st order scheme, the operators are dispersive at leading order

* In developing the methods, I've made extensive use of Maple
* implemented a discrete calculus
e automatic code generation
e automatic normal mode analysis and MEs
e structure of the generated code is highly cache efficient
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Trigonometric twilight zone exact solutions verify the accuracy of the solvers

overlapping grid solution (t=0.5)

jj/ Ha

error (t=0.5)

-0.5

» TZ (AKA manufactured solutions) illustrates
accuracy and stability for the sosup formulation
on overlapping grids

* schemes of order 2-6 have been
implemented and verified

0.5 -1e-6 1e-6

max error

convergence study

10" 10

Thursday, October 9, 14



Eigenmodes of Maxwell’s equations on a disk with perfect conducting boundaries

overlapping grid EX, t=0.5 HZ, t=0.5

Dirichlet BCs
——2nd |
1072 || —=4th
——6th
* The solvers are further verified for an exact |
. i ) o
solution to Maxwells equations on a disk S
> 10°}
S
e Exact Dirichlet boundary conditions are used 10° |
107" = -
10 10
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Eigenmodes of Maxwell’s equations on a disk with perfect conducting boundaries

overlapping grid EX, t=0.5 HZ, t=0.5

PEC BCs

 Perfect electric conducting (PEC) boundary | o |
conditions have been implemented up to 4th -
order accuracy S

&

C>é 107°
* Therefore the 6th order results degrade to S \
4th order but they are approximately 50x more degraded
accurate than 4th order results 107" | convergence from

4th order BC
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Electromagnetic diffraction off a perfectly conducting cylinder

overlapping grid

e Diffraction by a PEC cylinder also has a
known exact solution

* Note that the results from the 6th order code
are dominated by the 4th order accurate BC

max error

convergence study

——2nd

|| —=—4th

—— 6th

error is dominated
by error from 4th

10 order BC
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Trigonometric twilight zone verifies the accuracy of the solvers in 3D

max error

convergence study

e Solvers of order 2-6 have been implemented and verified

e Stability against overlapping grid perturbations is seen for all cases
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Electromagnetic diffraction off a perfectly conducting sphere

convergence study

2nd

—=—4th

max error

* In 3 space dimensions we have preliminary calculations for PEC sphere

* Results from the 2nd and 4th order codes show the expected behavior in terms
of accuracy and stability

* The 6th order physical BCs needs further work
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Summary

* By embedding the exact solution of a local problem, we generate stable and high order
accurate schemes for wave propagation

* These schemes are robust and shown to be stable in the presence of overlapping grid
interpolation boundaries

* The schemes have been implemented into an electromagnetics capability using Overture

Future Work

e High-order boundary conditions for Maxwell

* Variable coefficients

 More complex systems of equations such as linear elasticity
e Multidomain problems (light propagation through optics, FSI)

* Nonlinear elasticity

Thursday, October 9, 14



