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Motivation

• Advantages of finite elements
– Extendable to high-order accuracy
– Stencil is contained inside the element

• Benefits for overset grid schemes
– Minimal grid overlapping required
– Facilitates hole cutting
– Curved geometry poses minimal difficulties
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Hole Cutting

• Hole cutting includes two steps
– Identify invalid cells
– Selection among valid cells

Airfoil 1

Example of 2 airfoil overset grids

Grid-1 Grid-2

Airfoil-1

Airfoil-2 Airfoil-2

Airfoil-1



Identify Invalid Cells

• On Grid-1, determine location of Airfoil-2. Cells in Grid-1 that 
intrude or lie inside of Airfoil-2 are invalid, and need to be 
removed from domain. Repeat procedure on Grid-2 for Airfoil-1.

• Direct wall cut is used to identify invalid cells

Grids after direct wall cut (all invalid cells removed) 
Grid 1 Grid 2



Select Among Valid Cells

• To minimize grid overlapping, among the valid cells, certain 
cells are selected for simulation, the remainder are removed.
– Mesh quality
– Automation
– Parallel

• No definitive selection process. Two approaches are explored:
– Existing Implicit Hole Cutting (IHC) method
– Novel Elliptic Hole Cutting (EHC) method



IHC

• Developed by Lee & Baeder, 2003
• A cell select process based on cell-quality

– Each grid node is viewed as a sampling point
– For each sampling point, all candidate donors are identified
– Only the candidate with highest cell-quality is actived

• cell-quality is a grid metric (inverse of cell volume, aspect ratio...)
• User control is optional

– Not needed in getting valid overset grids
– In some cases, it's needed to make grid "continuous"

• All nodes in overlapping region need to be searched (expensive in 
parallel implementation)



IHC

• Cell-quality defined as the inverse of cell volume
• Smallest cells are selected across the whole domain
• High cell-quality does not gurantee a high-quality overset mesh. "Continuity" 

of cell selection is often more important

Mesh after original IHC



Elliptic Hole Cutting
• New approach. AIAA paper 2014-2980
• Solve a Poisson equation on each grid. Select the cells with the 

highest pseudo temperature.

– Assign high T to nodes you really want
– Assign low T to nodes you really don't want
– Let Poisson solver take care the rest of the nodes

• No need to solve the exact Poisson problems
• No need for the solutions to fully converge
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Elliptic Hole Cutting

• Choices of BCs
– Choice we have been using

• Invalid nodes are set to min value (T= -1)
• Nodes on wall, and nodes in non-overlap regions are 

set to max value (T= 1)
• The rest of the boundaries are treated as adiabatic wall 

(Tn= 0)
– Approximate distance function

• Boundary nodes are set to T = - distance_to_wall
– Other choices of BCs possible



Elliptic Hole Cutting

• Choices of source term
– In favor of cell-quality

where c is cell-quality
– In favor of specific grids

– Other choices of source term possible
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Elliptic Hole Cutting

Grid 1 Grid2

Boundary conditions for Poisson equations on each grid

Tn= 0

T= 1

T= -1

T= 1

T= -1



Elliptic Hole Cutting

Grid 1 Grid2

Source term for the Poisson problems in favor of cell-quality



Elliptic Hole Cutting

Grid 1 Grid 2

Solution of Poisson problems



Elliptic Hole Cutting

Grid 1 Grid 2

3D view of Poisson solution

Grid 1 and 2



Elliptic Hole Cutting

Final mesh 3D view of Poisson solution



Comparison of Hole Cutting

16 airfoil-grids overlapping on a background grid



Comparison of Hole Cutting

Implicit Hole Cutting



Comparison of Hole Cutting

In favor of cell quality In favor of airfoil grids

Elliptic Hole Cutting using different source terms



Consideration for Parallel

• T1 and T2 need to be compared at the same location (at same 
node from same grid)

• If we want to compare T1 and T2 on grid-1, we can:
– Interpolate T2 from grid-2 to grid-1; or
– Solve for T2 on grid-1



Consideration for Parallel

Interpolate T2 from grid-2 to grid-1
– Every node of grid-1 in the overlapped region needs to be 

searched on grid-2
– Lots of communication in parallel implementation



Consideration for Parallel

Solve for T2 on grid-1
– Only the nodes of grid-1 that are on boundaries of the 

overlapped region need to be searched on grid-2
– Much less communication in parallel implementation, ideal for 

parallel implementation



Elliptic Hole Cutting

“SimCenter” grids before hole cutting



Elliptic Hole Cutting

“SimCenter” grids after elliptic hole cutting



Advantages of Elliptic Hole Cutting
• Mesh quality:

– The "continuity" of cell selection is guaranteed by the smoothness of the 
Poisson solutions

• Automation:
– User input is not necessary
– Yet, user still have the freedom to influence cell selection process 

indirectly (through source terms, or boundary conditions) or directly (by 
modifying Poisson solution)

• Parallel:
– Poisson solver can easily be parallel
– Limited searching keeps communication cost down

• Flexibility
– Approximated distance funtion
– other choices possible
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Governing Equations

• Weighted intergral form of compressible Navier-Stokes 
equations with Spalart-Allmaras turbulence model

• Convective flux on dynamic grids

• SUPG used in defining weighting function

• Utilizing integration by parts the weak form becomes
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Overset Methodology

• Overset problems appear as boundary conditions

Example of overset problem of an airfoil



Discretization
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Linearization

• Jacobian matrix has two components stored separately
–      Intra-grid dependency, its structure does not change
–      Inter-grid dependency, its structure changes with dynamic grids
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Solution Procedure

• Discrete-Newton relaxation to converge time-residual
– Both intra-grid and inter-grid dependency are used, 

resulting in an implicit treatment of the overset 
boundaries

• GMRES with ILU(k) preconditioning to solve linear system
– Preconditioner is modified for overset problems for 

improved convergence of GMRES



Original GMRES Preconditioner

• Jacobian matrix has large bandwidth due to O 
– Reordering would be expensive: not practical for parallel implementation
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Modified GMRES Preconditioner

A modification for overset grids may be implemented as

is considered12O
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Modified GMRES Preconditioner

Another modification 
LU-decomposition of

      readily known 
implicitly

   are considered, but extra term is added12 21,O O
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Modified GMRES Preconditioners

Mesh used for comparison

0.2, 2M   
Steady inviscid flow, P1 elements
Free stream condition

CFL=100

One discrete-Newton step performed



Comparison of GMRES Preconditioners

Convergence history of GMRES subiteration 
using different preconditioner

1St modified version is used in current study
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Manufactured Solutions

• The Method of Manufactured Solution (MMS) is a general 
procedure for generating nontrivial exact solutions to PDEs

• Accuracy of the SUPG overset scheme is assessed using 
MMS based on a comprehensive set of guidelines



Manufactured Solutions

• MMS for both inviscid and laminar (Re=100) equations are 
performed to assess accuracy

• The  following trigonometric functions are used to derive 
forcing functions and boundary conditions

–                 correspond to the free stream condition of 

–        correspond to cosine and sine of 0◦, 40◦, 80◦, and 120◦
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Manufactured Solutions

Temperature on coarsest meshes, laminar, P3 elements



Manufactured Solutions

Temperature, invisicd Temperature, laminar
Order of accuracy for inviscid and laminar flow
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Steady Turbulent Flow

60.2, 2 ,Re 10M    

Free stream condition

Spalart-Allmaras  turbulent model
y+ of wall spacing is 1



Steady Turbulent Flow

Single grid Zero-layer non-matched 
overset grid

Multi-layer overlapping 
overset grid

Grids used in simulations



Steady Turbulent Flow

P1 elements P2 elements P3 elements

X-velocity profile at x=0.24 and 0.32
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Sinusoidally Oscillating Airfoil

• Benchmark case for dynamic mesh code validation 
• Free stream 
• NACA0012 airfoil pitch about its quarter chord
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Sinusoidally Oscillating Airfoil

• Inviscid. P1 elements
• Multiple layers of overlap, grids generated a priori
• Grid moves as a rigid body. Analytical grid velocities are used
• For overset simulation, background grid is stationary, only 

airfoil grid is moving

Single grid Overset grids Global view of overset 
grids



Sinusoidally Oscillating Airfoil

Time history of coefficient of lift



Sinusoidal Pitch and Plunge Airfoil

• Free stream
• NACA0012 Airfoil pitch about its quarter chord, and plunge
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Sinusoidal Pitch and Plunge Airfoil

Time history of coefficient of lift
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Relative Motion Between Two Bodies

• Inviscid simulation
• Demonstration of dynamic hole cutting
• Free stream 
• Airfoil is stationary. Triangle wedge moves upstream at
• Non-dimensional chord length = 1
• Non-dimensional time step = 0.05
• Modified IHC is used

0.1, 0M    

0.1M 



Relative Motion Between Two Bodies

         t=3                                     t=20                                         t=34                                   t=43
Grids (after hole cutting) and entropy contour, P2 elements
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Adaptation Methodology

• Ahrabi, B.R., Anderson, W.K., Newman III, J.C., "High-Order Finite-
Element Method and Dynamic Adaptation for Two-Dimensional Laminar 
and Turbulent Navier-Stokes," 32nd AIAA Applied Aerodynamics 
Conference, June 2014, AIAA Paper 2014-2983.
– Dynamic hp-adaptation
– Adjoint-based (steady), and featured-based (steady & unsteady)
– Weight function is contiunous across cell interface (no need to 

calculate the flux)
– Efficient handling of hanging nodes

• Implemented simply by adding a static condensation step to every 
continuous Galerkin method

– Discretization is conservative
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Triangle Wedge Vortex Shedding

No adaptation

Inviscid
M=0.2
P1 element
No adaptation



Triangle Wedge Vortex Shedding

With h-adaptation (refinement only)

Inviscid
M=0.2
P1 element
Feature based

H-adaptation
 (refinement only)



Multiple Airfoils

Inviscid, steady
M=0.2
P1 element



Multiple Airfoils

No adaptation



Multiple Airfoils

H-refinement in specified region
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Conclusion
• Development of a novel hole cutting procedure: Elliptic Hole 

Cutting
• Development of modified preconditioners for overset grid 

computations
• Demonstrated that the design order of accuracy of the method 

is retained using the method of manufactured solutions
• Demonstrated the method for steady-turbulent and for 

dynamic moving boundary simulations
• First implementation of a high-order SUPG overset grid 

scheme
• Demonstrated the potential of using adaptation in overset 

scheme
• Prototyping in 2D complete. Extension to 3D underway


