

Unsteady, Unstructured Overset Mesh Adaptation with an Efficient Parallel Localization Scheme

Rajiv Shenoy, CRAFT Tech Marilyn Smith, Georgia Tech Michael Park, NASA Langley

Nonlinear Computational Aeroelasticity Lab

Introduction

- Complex wake physics require high fidelity methods for short and long age wake computations
- Applications include rotorcraft and wind turbine wakes
- Researchers have improved accuracy and capabilities:
 - Mesh adaptation is more efficient than uniform refinement
 - Overset grids enable moving body functionality and is popular for dynamic simulations
- Unstructured grids permit body-fitting of complex geometries

Computational Method

FUN3D – developed at NASA Langley

- Mixed-element unstructured, node-centered, finite volume solver
- Second-order accurate in space
- Second-order implicit time-integration (BDF2opt)
- Several turbulence models including hybrid RANS-LES (HRLES) – Lynch, (GT 2011)
- Overset functionality with DiRTlib/SUGGAR++ (PSU) –
 O'Brien, (GT 2006)
- Metric-based grid adaptation for tetrahedral elements

Feature-Based Error Estimators

Vorticity Magnitude
$$F_{e,\omega} = \ell_e \frac{|\omega|_{n_1} + |\omega|_{n_2}}{2}$$

Pressure Difference
$$F_{e,p} = \ell_e |p_{n_1} - p_{n_2}|$$

Q-criterion:
$$\frac{1}{2} \left(\left| \Omega \right|^2 - \left| S \right|^2 \right)$$

Q-criterion: $\frac{1}{2} \left(\left| \Omega \right|^2 - \left| S \right|^2 \right)$ Separates regions of high rotation rate Ω from high strain rate S

Nondimensional Q-Criterion
$$F_{e,Q-crit.} = \max_{n_1,n_2} \left[\frac{1}{2} \left(\frac{\|\Omega\|^2}{\|S\|^2} - 1 \right) \right]$$
Kamkar et al. (JCP 2012)

Metric-Based Adaptation

Intensity at each node
$$I = \max_{edges} \left(\frac{F_e}{F_{tol}} \right)$$

$$I = \min_{edges} \left(\frac{F_e}{F_{tol}} \right)$$

$$I = \min_{$$

- By obtaining adaptation intensity at each node, isotropic spacing is obtained
- Anisotropy reduces cost by stretching element
 - Introduced by computing a Hessian-based grid metric
 - The grid metric gives shape to each grid element
- Adaptation mechanics are performed based on the grid metric
 - Boundary layer mechanics are currently unavailable
 - More details in Park et al. (AIAA, 2008)

Extension to Overset Grids

- 1. Adaptation performed on the composite grid
 - All component grids are adapted outside of the boundary layer
- 2. Hole-cutting of adapted grid is handled by SUGGAR++ Adapted composite grid broken down into component grids and SUGGAR++ is called to obtain new domain connectivity
- Designed a node indexing protocol for agreement between FUN3D and SUGGAR++

Time-Dependent Adaptation

Adapt grid over time-evolving interval(s)

To handle implicit time integration:

- 1. Back plane metrics are included in metric intersection
- Back plane grid motion is updated

Time-Dependent Adaptation

- Periodic interval adaptation
 - Rigid, prescribed motion
 - Adapt over a period and use new grid to get improved predictions and repeat until convergence
 Rigid-body rotorcraft – 1/N_{blades} rev. after periodicity achieved

- General (non-periodic) interval adaptation
 - Adapted over several time intervals using a transient fixedpoint algorithm (Alauzet et al, AIAA 2007)
 - For each interval, perform adaptation and solution transfers and compute improved solution on adapted grid

Transient-Fixed Point Algorithm

	Definition
N_{FP}	No. of fixed point iterations
N_{l}	No. of adaptation intervals
t :0	Start time of interval i

Unlike previous methods, back plane complexity is handled

Efficient Localization Scheme

- Developed a novel parallel scheme to efficiently search for interpolation stencils over massively distributed systems
- Compatible with mixed-element overset grids
- Uses collective communication (one thread per processor)
- Features that make the scheme fast:
 - Relies on neighbor walks, so searches are linear in space
 - Parallel advancing front keeps search space small (new feature)
- To avoid search failures, there are robustness features:
 - Hierarchical prioritization prevents search failure on realistic geometries (new feature)
 - Random selections to terminate cyclic searches
 - Defaults to kd-tree method, Lynch et al. C&F 2014

Box Grid Test Case

- Simple box domain with no geometry
- Test for cost and parallelization
- Three grids: 125k, 1M, and 27M nodes
- Number of processors: 8 ... 512
- Averages done on five trials for consistency (randomness of neighbor walk)
- Assessments performed on NASA Langley's K cluster
- Monitor complexity and required wall time

Box Grid Localization Results

Serial complexity is $O(C \times N_{nodes})$ - Alauzet et al. (IJNM 2010)

- C should be approximately the average number of elements surrounding a node
- Observed C is approx. 5 for all decompositions
- Consistent parallel complexity of the localization scheme is confirmed

Average number of searches

Box Grid Localization Results

Localization Timing

- Time expected to decrease monotonically and ideal scaling should have a power -1
- Observed power is approx. -0.89
- Method is scalable with solver tested
- Localization is cost effective with respect to most processes that the solver handles

GT Rotor-Airfame Configuration

- Simple geometry to study RFI effects
- Brand: PhD Thesis, 1989 for exp. data:
 - Time-averaged fuselage pressures
 - Instantaneous fuselage pressures

- Advance ratio of 0.10
- Time-step equivalent to 1° azimuth
- Hybrid RANS-LES computations
- Periodic time interval: 180° sweep
- Adaptation interval study

Method	Tolerance (F _{tol})			
ω	0.001			
Δр	0.003			
Nondim. Q-criterion	0.01			

Vortex-Fuselage Impingement Physics

Sketch of Fuselage Symmetry Plane

Nonlinear Computational Aeroelasticity Lab

Average Pressures

Upper fuselage centerline pressures are time-averaged

Vorticity mixed scheme: $|\omega| \& \Delta p$ Q-crit. mixed scheme: Q-crit. & Δp

Instantaneous Pressures

Adaptation Convergence

Integrated averaged centerline pressure coefficient

$$f_{\overline{c}_p} = \int_0^{3R} \overline{c}_p dx$$

Iter. 2: ~1.0% change

Adaptation Interval Sensitivity

- Investigated effect of time intervals:
 - 5° requiring 72 intervals/rev
 - 15° requiring 24 intervals/rev
 - Periodic (180°) adaptation 1 interval same grid re-used
- Vorticity-mixed scheme used

Wall time/rev. (hours) on 480 processors

	5 deg	15 deg	Periodic
Flow Solver	24.0	22.8	16.7
Adaptation & Interpolation	7.2	4.2	0.3
Domain Connectivity	13.2	4.8	1.2
Total	44.4	31.8	18.2

Note: Substantial cost increase due to overhead tasks; may be better streamlined

2.4x cost of periodic case

1.75x cost

Interval Sensitivity (Average Pressures)

impingement location

Nonlinear Computational Aeroelasticity Lab

Interval Sensitivity (Instantaneous Pressures)

Consistent agreement and small differences in location and magnitude observed

Vorticity Mesh Contours

Q-Criterion Iso-Contours

More Information

All GT Theses and many datasets/presentations are freely available at:

https://smartech.gatech.edu/

(once you create an account – it is free, but you must register)

Rajiv Shenoy's Thesis:

https://smartech.gatech.edu/handle/1853/51796

Localization & Interpolation

- Background Grid: Solution is known on this grid
- New Grid: Solution needs to be transferred to this grid
- Localization: Search process of a new grid node to find an enclosing element of background grid
- Barycentric coordinates (β_i) provide a natural basis to localize a node to a tetrahedral element
 - Provides information for search path (next step)
 - Serve as weights using the 4 tetrahedron nodes as the stencil

Nonlinear Computational Aeroelasticity Lab

Neighbor Walk

- Barycentric coordinates provide means of making neighbor steps
- Make steps until node is localized
- If multiple neighbor choices exist, then a step is randomly selected
 - Prevents infinite cyclic walks
- When cyclic walks are not avoidable, the search can default to a kd-tree search for those nodes

Requires background grid's list of cell adjacencies

Advancing Front

- Enclosing element becomes a guess for node neighbors
- Subsequent searches become increasingly confined

Seeding the front with 1 node

Active node Completed node Active front New grid

Advancement of front

Requires new grid's list of node neighbors

Parallelization of Localization Scheme

- Relies on collective communication (MPI)
- Keep track of the guess element and partition number
- What happens if the walk hits a partition boundary?
 - Communicate to neighboring partition (processor)
 - Information about a boundary node is provided
 - On that partition, one element surrounding that node is randomly selected as the guess element and the neighbor walk continues
- Once a node is localized, its enclosing element,
 partition, and weights are stored for interpolation

Robustness Features

- These searches are linear and can potentially encounter geometry boundaries especially for realistic problems
- Therefore localize nodes in hierarchical fashion:
 - Corner nodes: where three boundary faces coincide
 - Edge nodes: where two boundary faces coincide
 - Surface and volume nodes (bulk of the grid)
- Use kd-tree search method, Lynch et al. C&F 2014, to localize corner and edge nodes, generally < 1% of grid
- Surface and volume nodes are then localized using the parallel advancing front scheme

Other Enhancements

- Handling mixed-element grids
 - Non-tetrahedral elements are used in the boundary layer
 - Can use barycentric approach by converting elements into tetrahedra (only data structures)
- For overset grids, localize each component grid

