
Solving Fluid Structure Interaction Problems with
Overture

Overcoming the fluid-structure added-mass instability for incompressible
flows

Bill Henshaw

Department of Mathematical Sciences,
Rensselaer Polytechnic Institute,

Troy, New York, USA.

12th Symposium on Overset Composite Grids and Solution Technology,
Georgia Institute of Technology, Atlanta, Georgia, October 6–9, 2014.

Henshaw (RPI) FSI with Overture OGS2014 1 / 26



Acknowledgments.

Primary collaborators:

Jeff Banks
(LLNL→ RPI)

Kyle Chand
(LLNL)

Don Schwendeman
(RPI)

Other contributors to FSI work:
1 Björn Sjögreen (LLNL).
2 Alex Main (Ph.D. student, Stanford )

Supported by:

Department of Energy, Office of Science, ASCR Applied Math Program.
LLNL: Laboratory Directed Research and Development (LDRD) program.
National Science Foundation, RPI.

Henshaw (RPI) FSI with Overture OGS2014 2 / 26



Overture and the CG solvers are open source

The Overture framework and Composite Grid (CG) PDE solvers are
open source and available from (documentation, downloads)

overtureFramework.org

The source-code repositories are hosted at

sourceforge.net/projects/overtureframework
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Fluid Structure Interaction (FSI) algorithms
Our approach in Overture is based on deforming composite grids.

Approach:
Fluids are solved in an Eulerian frame.
Solids are solved in a Lagrangian frame.
Deforming interface grids are regenerated at each time-step with
the hyperbolic grid generator.

fluid

solid

solid

interfaces

t=1.0 t=1.5 t=2.0
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Basic Components used in FSI Time-Stepping.

1 HyperbolicMapping - hyperbolic component grid generator (to
recompute grids next to deforming surfaces).

2 Ogen grid generator (to re-compute connectivity).
3 Fluid solver (e.g. Cgcns, Cgins).
4 Solid Solver (e.g. Cgsm, BeamSolver, . . . )
5 Multi-physics, multi-domain driver program (Cgmp)

Henshaw (RPI) FSI with Overture OGS2014 5 / 26



Basic FSI Algorithm.

1: procedure SOLVEFSIDCG(G, tfinal) . Input: initial composite grid and final time
2: t := 0; n := 0; Gn = G;
3: assignInitialConditions(qn

i , q̄n
i , Gn);

4: while t < tfinal do
5: ∆t := computeTimeStep(qn

i , q̄n
i , Gn);

6: Gp := moveGrids(Gn, qn
i , q̄n

i ); . (calls HyperbolicMapping)
7: Gp := updateOverlappingGrid(Gp); . (Ogen)
8: qn+1

i := advanceFluid(qn
i , Gn, Gp, ∆t);

9: q̄n+1
i := advanceSolid(q̄n

i , G, ∆t);
10: (nT vI ,nTσI) := projectInterface(qn+1

i , q̄n+1
i , Gp );

11: qn+1
i := applyFluidBCs(qn+1

i , Gp, nT vI , nTσI);
12: q̄n+1

i := applySolidBCs(q̄n+1
i , G, nT vI , nTσI);

13: Gn+1 := correctMovingGrids(qn+1
i , q̄n+1

i , Gp, ∆t);
14: t := t + ∆t ; n := n + 1;
15: end while
16: end procedure
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Movies: Incompressible flow with rigid bodies
Traditional algorithms fail for light solids

drops

drops-speed.mp4

drop stick

dropStick.mp4

Incompressible flow + rigid cyls Incompressible flow + stick
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FSI and Added-Mass Instabilities



Traditional partitioned algorithms may require many
sub-time-step iterations for light solids.
Monolithic schemes are stable but can be expensive, less flexible.

Traditional partitioned algorithm:
1 Advance solid using stress (traction) from the fluid

σI = σfluid

2 Advance fluid using velocity from the solid,

v I = v̄solid

The stability problem is particularly acute for incompresssible
flows (e.g. blood flow).
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The added-mass instability has received much
attention in the literature

Approaches to partially address the added mass instability:

Robin-Robin (mixed) boundary conditions with coefficients determined
from simplified known solutions.

interface artificial compressibility, fictitious pressure and fictitious mass.

fixed point iterations (Aitken accelerated).

semi-monolitic, approximate factorizations and Newton type schemes.

Causin, Gerbeau, Nobile (2005), Forster, Wall, Ramm (2007), vanBrummelen (2009) Badia,
Quaini, Quarteroni (2008), Astorino, Chouly, Fernandez (2009), Degroote, Bathe, Vierendeels
(2009), Guidoboni, Glowinski, Cavallini, Canic (2009) Fernandez (review, 2011), Gretarsson,
Kwatra, Fedkiw (2011) Baek Karniadakis (2012) Nobile, Vergara (2012), Yu, Baek, Karniadakis
(2013), Bukac, Canic, Glowinski, Tambaca, Quaini (2013), Fernandez, Mullaert, Vidrascu (2014)
Fernandez, Landajuela (2014), . . .
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Added Mass Partitioned (AMP) Algorithms
Overcome the added-mass instability - require no sub-iterations

In some recent papers we have shown how to over-come the added-mass
instability for different FSI regimes (AMP schemes require no sub-iterations)

1 Compressible flow + compressible solids
→ Embed solution of a fluid-solid Riemann problem.

2 Compressible flow + rigid solids
→ Incorporate added-mass tensors into the rigid body equations.

3 Incompressible flow + beams/shells
→ Derive Robin pressure boundary condition by matching accelerations.

4 Incompressible flow + compresssible elastic bulk solids
→ Derive Robin pressure boundary condition from solid characteristics.

• JWB, B. Sjögreen, A normal mode stability analysis of numerical interface conditions for fluid/structure interaction, Commun.
Comput. Phys. (2011).
• JWB, WDH, DWS, Deforming Composite Grids for Solving Fluid Structure Problems, JCP (2012).
• JWB, WDH, BS, A stable FSI algorithm for light rigid bodies in compressible flow, JCP (2013).
• JWB, WDH, DWS, An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic
solids, JCP (2014)
• JWB, WDH, DWS, An analysis of a new stable partitioned algorithm for FSI problems. Part II: Incompressible flow and
structural shells, JCP (2014).
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AMP: Compressible flow + elastic solids

The AMP scheme for compressible flow and elastic solids is based on
a impedance weight average of provisional fluid and solid values:

vI =
z̄v̄ + zv

z̄ + z
+
σ − σ̄
z̄ + z

,

σI =
z̄−1σ̄ + z−1σ

z̄−1 + z−1 +
v − v̄

z̄−1 + z−1

where z̄ = ρ̄c̄p and z = ρa are the solid and fluid impedances. Derived
from a fluid-solid Riemann problem.
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Compressible flow + elastic solids

Neo-Hookean solid

deformingEllipseNeoHookean.mp4

deforming sticks

deformingSticks.mp4

Shock hitting a neo-Hookean solid Shock hitting two elastic sticks
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AMP: Compressible flow + light rigid-bodies

Approach: Analytically derive exact added-mass tensors for the rigid-body
equations of motion.

AMR grids Schleiren

Shock hitting an ellipse of zero mass.

• J.W. Banks, WDH, Sjögreen, A stable FSI algorithm for light rigid bodies in compressible flow,
JCP (2013).
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Compressible flow + elastic solids

zero mass ellipse

shockMassZeroEllipse.mp4

Shock hitting a zero mass ellipse
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FSI for Incompressible Flows



Traditional partitioned schemes have historically
suffered from added mass instabilities for light solids
Incompressible flows are particularly difficult due to the infinite speed of sound.

Flapping beam (requires tens of sub-iterations per time step with traditional scheme).

1 Traditional FSI partitioned schemes often fail for light solids and require
multiple sub-iterations per time-step.

2 The problem originates with the added mass effect – to move a body
one must also move the surrounding fluid.

3 Incompressible flows are important (e.g. blood flow in a vein, flapping
flag, underwater structures) but are particularly difficult.
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Incompressible flow with Beams
Using traditional scheme and many (20-40) sub time-step iterations.

cyl beam

cylBeamTH3f4Crop.mp4

two beams

twoBeamsInAChannelCrop.mp4

Incompressible flow + flexible beam

Incompressible flow + two beams
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Incompressible Stokes fluid + elastic bulk solid.
For analysis and evaluation we consider an FSI model problem.

solid: ΩS

fluid: ΩF

interface: Γ

y = H̄

x = 0 x = L
y = −H

y = 0

Incompressible Stokes fluid and compressible elastic bulk solid
equations:

Fluid:


ρ
∂v
∂t

+∇p = µ∆v, x ∈ ΩF ,

∇ · v = 0, x ∈ ΩF ,

v(x ,−H, t) = 0,

Solid:

 ρ̄
∂2ū
∂t2

= (λ̄+ µ̄)∇(∇ · ū) + µ̄∆ū, x ∈ ΩS ,

ū(x , H̄, t) = 0,

Interface: v =
∂ū
∂t
,

µ(
∂v1

∂y
+
∂v2

∂x
) = µ̄(

∂ū1

∂y
+
∂ū2

∂x
), −p + 2µ

∂v2

∂y
= λ̄∇ · ū + 2µ̄

∂ū2

∂y
, x ∈ Γ.
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AMP schemes for INS + bulk solids
Robin condition is derived from outgoing solid characteristic.

Key ingredient I: Given predicted values for the solid, use the out-going solid
characteristic variables, to define the fluid interface conditions

nTσn + z̄pnT v = nT σ̄(p)n + z̄pnT v̄(p) ≡ B(σ̄(p), v̄(p)), x ∈ Γ

eT
mσn + z̄eT

mv = eT
mσ̄

(p)n + z̄eT
mv̄(p) ≡ Bm(σ̄(p), v̄(p)), x ∈ Γ

z̄p = ρ̄c̄p and z̄ = ρ̄c̄s are the solid impedances , OR since σ = −pI + τ ,

−p + nTτn + z̄pnT v = B(σ̄(p), v̄(p)), x ∈ Γ,

eT
mτn + z̄eT

mv = Bm(σ̄(p), v̄(p)), m = 1,2, x ∈ Γ,

Key ingredient II: Matching accelerations instead of velocities gives a Robin
condition for the fluid pressure

−p −
z̄p∆t
ρ

∂p
∂n

+ nTτn +
µz̄p∆t
ρ

nT (∆v) = nT σ̄(p)n + z̄p∆t nT ∂v̄(p)

∂t
, x ∈ Γ.
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Incompressible Stokes fluid + beam/shell.

fluid: ΩF

x = 0 x = L
y = −H

y = 0

ū = ū(x , t)

Incompressible Stokes fluid and beam equations:

Fluid:


ρ
∂v
∂t

+∇p = µ∆v, x ∈ ΩF ,

∇ · v = 0, x ∈ ΩF ,

v(x ,−H, t) = 0,

Solid:
{
ρ̄hs v̄t = L̄(ū)− σn, x ∈ Γ,

Interface: v =
∂ū
∂t

Example beam operator: L̄(ū) = −EI ūxxxx .
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AMP schemes for INS + beams or shells
Robin condition derives from matching accelerations

Beam equation for solid

ρ̄h̄ v̄t = L̄(ū)− σn, x ∈ Γ,

Matching accelerations vt = v̄t implies

ρ̄h̄ vt = L̄(ū)− σn, x ∈ Γ,

Using ρvt = ∇ · σ and given a predicted value for the beam ū(p), the
Robin conditions for the fluid are

σn +
ρ̄h̄
ρ
∇ · σ = L̄

(
ū(p)

)
, x ∈ Γ,

Which includes a Robin condition for the pressure

p +
ρ̄h̄
ρ

∂p
∂n

= nTτn +
µρ̄h̄
ρ

nT ∆v− nT L̄
(
ū(p)

)
, x ∈ Γ
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Traveling wave solutions: Stokes + Elastic Solid
Computed solutions for a light and heavy solid match analytic solutions.

v̄1

v1 ρ̄/ρ = .05

−.05

.05

−.05

.05

v̄2

v2 ρ̄/ρ = .05

−.10

.10

−.10

.10

σ̄22

p ρ̄/ρ = .05

−.036

.036

−.041

.041

v̄1

v1 ρ̄/ρ = 100

−.35

.35

−.35

.35

v̄2

v2 ρ̄/ρ = 100

−.55

.55

−.55

.55

σ̄22

p ρ̄/ρ = 100

−62.

62.

−.67

.67

−1

0

.5

y

0 1x
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Numerical results demonstrate stability and
second-order accuracy of the AMP schemes
Confirming normal-mode analysis.

MP-VE, traveling wave, viscous fluid, µ = .02, heavy elastic solid, ρ̄/ρ = 103

hj E (p)
j r E (v)

j r E (ū)
j r E (v̄)

j r E (σ̄)
j r

1/20 1.2e-2 1.9e-2 2.4e-3 1.6e-2 3.5e1
1/40 2.9e-3 4.1 3.7e-3 5.1 4.5e-4 5.4 3.1e-3 5.2 9.1e0 3.9
1/80 6.5e-4 4.5 6.0e-4 6.1 8.3e-5 5.4 6.0e-4 5.1 2.5e0 3.6

1/160 1.5e-4 4.3 1.3e-4 4.8 1.6e-5 5.0 1.2e-4 4.8 6.8e-1 3.7
rate 2.18 2.21 2.03 2.03 1.95

MP-VE, traveling wave, viscous fluid, µ = .005, very light elastic solid, ρ̄/ρ = 10−3

hj E (p)
j r E (v)

j r E (ū)
j r E (v̄)

j r E (σ̄)
j r

1/20 2.1e-5 3.2e-4 8.0e-4 2.4e-3 1.3e-5
1/40 4.6e-6 4.6 9.2e-5 3.4 1.6e-4 4.9 5.8e-4 4.2 3.4e-6 3.9
1/80 9.8e-7 4.7 2.3e-5 4.0 2.7e-5 6.1 10.0e-5 5.8 1.1e-6 3.2
1/160 2.2e-7 4.5 5.7e-6 4.0 4.3e-6 6.3 2.2e-5 4.6 2.9e-7 3.6
rate 2.21 1.93 2.53 2.29 1.82

Traveling wave solution for a viscous incompressible fluid and elastic solid (MP-VE).
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Bulk solids: Traditional scheme is always unstable!
(on sufficiently fine grids, without sub-iterations)

Analysis shows: The Traditional Partitioned (TP) algorithm is formally
unconditionally unstable (on a fine enough grid).

Theorem

The TP algorithm is stable if and only if ∆t ≤ 2
c̄p

(
∆y − ρH

ρ̄

)
.

2D computations confirm the theory:

MP-VE, traveling wave, TP algorithm
δy ρ̄/ρ = 800 ρ̄/ρ = 400 ρ̄/ρ = 200 ρ̄/ρ = 100

1/20 stable stable stable stable
1/40 stable stable stable unstable
1/80 stable stable unstable unstable

1/160 stable unstable unstable unstable
1/320 unstable unstable unstable unstable
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Summary

1 Traditional partitioned schemes for FSI suffer from an added-mass
instability for light solids.

2 Traditional schemes can sometimes be stabilized by using multiple
sub-iterations per time step, or through the use of Robin (mixed)
interface conditions (which still generally require sub-iterations).

3 We have developed AMP schemes that over-come the added-mass
instability for a variety of regimes and require no sub-iterations.

4 AMP schemes for incompressible flows and compressible elastic bulk
solids or elastic shells/beams were described and shown to be stable
without iterations even for light solids.

The Overture software is freely available from overtureFramework.org

(does not yet include beam models).
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