
10/6/2014

1

OVERFLOW 2 Training Class

Pieter G. Buning

NASA Langley Research Center
pieter.g.buning@nasa.gov

12th Symposium on Overset Composite Grids

& Solution Technology

Georgia Institute of Technology

Atlanta, GA
October 6-9, 2014

10/6/2014

2

Preliminaries

OVERFLOW website: http://overflow.larc.nasa.gov

– Release notes

– User’s Manual

– Procedure for requesting the code

– Slides from 2010 training class (includes Bobby Nichols’ morning

session)

– Reference papers

OVERFLOW email list:

https://lists.nasa.gov/mailman/listinfo/overflow

http://overflow.larc.nasa.gov/
https://lists.nasa.gov/mailman/listinfo/overflow

10/6/2014

3

Class Outline

• Introduction

• OVERFLOW-D mode without grid motion

• OVERFLOW-D mode with grid motion

• Solution adaption

• Compiling and running OVERFLOW

• Utilities and test cases

10/6/2014

4

Introduction

• Overset grid process

– Compare OVERFLOW mode vs. OVERFLOW-D mode

– Input files

– Moving body simulation

10/6/2014

5

Overset Grid Approaches

• OVERFLOW 2: two modes of operation

– OVERFLOW mode with grid joining input from Pegasus 5 or SUGGAR

– OVERFLOW-D mode using DCF

• OVERFLOW mode

– All grids are created external to the flow solver (grid.in)

– Pegasus 5 (or SUGGAR) used to cut holes and establish interpolation stencils

(XINTOUT)

– No moving body capability, no grid adaption

– OVERFLOW namelist input

• OVERFLOW-D mode using DCF (Domain Connectivity Function)

– Near-body grids are created external to the flow solver (grid.in)

– X-rays of body surfaces used for cutting holes (xrays.in)

– Additional namelist inputs

– Geometry Manipulation Protocol (GMP) files to describe bodies and motion

(Config.xml, Scenario.xml)

• OVERFLOW 2 can do either approach

– Decision is based on whether additional namelists are present in input file

10/6/2014

6

Example: Multi-Element Airfoil

• OVERFLOW mode

– All grids supplied

– Grid system from Pegasus 5

– Holes are cut automatically,

based on comparable cell

sizes

– Better quality grid system

• OVERFLOW-D mode

– Only near-body grids supplied

– Distance from surfaces

specified for hole cutting

– Holes cut by DCF inside

OVERFLOW

– Hole cutting is fast enough for

moving body problems

10/6/2014

7

Input Files for OVERFLOW 2

What do you need to be able to run?

• OVERFLOW mode
– grid.in (all grids)

– mixsur.inp (input to force and moment preprocessor)

– XINTOUT (Pegasus 5 hole cutting and interpolation stencils)

– OVERFLOW namelist input

• OVERFLOW-D mode
– grid.in (near-body grids)

– mixsur.inp (input to force and moment preprocessor)

– xrays.in (x-rays for hole cutting)

– OVERFLOW namelist input

– Config.xml, Scenario.xml (body properties and positioning)

10/6/2014

8

Moving Body Simulation Process

• Pre-processing:

– Near-body grid generation

– Definition of force and moment integration surfaces

– Creating X-rays for hole cutting

• OVERFLOW grid processing:

– Off-body grid generation

– Hole cutting and boundary interpolation stencils

• Moving body simulation

– Body motion (GMP interface)

– Time-advance scheme

– Saving motion, forces, flow solution

• Post-processing

– Non-trivial!

10/6/2014

9

Flow Simulation Process

• Starting (and for grid adaption):

– Read near-body grids, move to dynamic position(s)

– Make off-body grids, and any near-body refinement regions

– Interpolate flow solution onto new near- and off-body grids

– Run DCF (cut holes, find interpolation stencils)

– Advance flow solution one step

– Compute forces and moments

• Every step:

– Update near-body grid positions

– Run DCF

– Advance flow solution one step

– Compute forces and moments

10/6/2014

10

OVERFLOW-D Mode Without Grid Motion

• NAMELIST inputs

• Near-body grid generation

• Force and moment integration

• Generating X-rays

• Off-body grid generation

• Grid assembly with DCF

• Data surface grids

10/6/2014

11

OVERFLOW Namelist Input

• $GLOBAL (global inputs for OVERFLOW)

• $OMIGLB (global inputs for OVERFLOW-D)

• $GBRICK (off-body grid generation)

• $BRKINP (user-specified proximity regions)

• $GROUPS (grid splitting and load-balancing)

• $XRINFO (hole cutting)

• $DCFGLB (stencil quality and repair)

• $FLOINP (flow parameters)

• $VARGAM (variable gamma/multiple species)

• Other namelists per grid…

*Unique to OVERFLOW-D mode

10/6/2014

12

OVERFLOW Namelists per Grid

• $GRDNAM (grid name)

• $NITERS (subiterations per grid)

• $METPRM (numerical method selection)

• $TIMACU (time accuracy)

• $SMOACU (smoothing parameters)

• $VISINP (viscous and turbulence modeling)

• $BCINP (boundary conditions)

• $SCEINP (species convection equations)

See over2.2x/doc/namelist.pdf for a detailed list of all input

parameters and definitions

10/6/2014

13

Near-Body Grid Generation

• Volume grids are generated from overset surface grids

• Use Chimera Grid Tools (CGT) or commercial package

• All near-body volume grids concatenated into grid.in

• Reference: W.M. Chan, R.J. Gomez III, S.E. Rogers, and P.G. Buning,

“Best Practices in Overset Grid Generation,” AIAA 2002-3191, June 2002

10/6/2014

14

Near-Body Grid Generation

• Distance off wall (S) and outer grid spacing (S) contribute to the size

of the off-body grids

– We will refer to S and S, and how they affect the grid generation

process, in following sections

• One philosophy:

– Grow volume grids out until grid cells are roughly square

– Grow out a total distance S which is about 10 times the outer cell size S

– This will determine the off-body grid spacing, and will contribute to the

required X-ray spacing as well

10/6/2014

15

Force and Moment Integration

• Use the mixsur utility from CGT to generate combination of surface grids

and triangular “zipper grids” for force and moment integration

– Input file is commonly called mixsur.inp

– Documentation and examples provided with CGT

• For 6-DOF simulations, aerodynamic forces will be used in OVERFLOW to

update body position

– Component (body) names in mixsur.inp must match GMP file component

names

• Reference conditions (length, surface area, moment reference center)

– Moment reference center will move with first body using this reference condition

– Define separate reference conditions for each moving body

– Example: 2 airfoils (one moves, the other is fixed)

0, 500, 500, -1, 0, 0 FSMACH,ALPHA,BETA,REY,GAMINF,TINF

2 NREF

1., 1., 0.25, 0., 0. REFL,REFA,XMC,YMC,ZMC

1., 1., 0.25, 0., 0. REFL,REFA,XMC,YMC,ZMC

10/6/2014

16

Force and Moment Integration

• For mixsur, be sure to visually

check resulting integration surfaces!

– PLOT3D command files generated

automatically

– Look for missing triangles, tangled

zipper grids

• USURP (Unique Surfaces Using

Ranked Polygons) by David Boger

(Penn State) is an open source

alternative to mixsur

– Same input file; output also

recognized by OVERFLOW

– Designed to overcome zipper grid

problems

– Distributed with Chimera Grid Tools

10/6/2014

17

Creating X-Rays

• Creating X-rays

• Picking X-ray spacing

• Using OVERGRID to create X-rays

• X-ray number and Body ID

• Using gen_x to create X-rays

• Examples

• Notes and comments

10/6/2014

18

Creating X-Rays

• An X-ray is an (x,y) array of z-value pierce-points of a body

– These are used inside OVERFLOW for faster hole-cutting for grid connectivity

• Process relies (entirely) on Chimera Grid Tools (CGT)

• Create the xrays.in file before running OVERFLOW

• Use OVERGRID (interactive) or use gen_x (batch) in CGT

• Before you start, you will need to:

– Generate a PLOT3D grid file of each body surface

– Pick the X-ray spacing

10/6/2014

19

Picking X-Ray Spacing

• This is the “resolution” of the body surface for the hole-
cutting operation

– The X-rays need to represent the body geometry
sufficiently well to cut holes in other grids

• For single-body applications, use ½ to 1 times the outer
cell size of the near-body grids (ΔS)

– Too-fine X-ray spacing slows down hole-cutting (very
important for moving-body problems)

– X-rays take memory in the flow solver (proportional to
spacing squared)

• For bodies in close proximity, use 0.1 to 0.2 times the
distance between bodies

– Can use different x-rays (with different spacing) for
different regions

• X-rays used for collision detection also need higher
resolution

– More on this later…

10/6/2014

20

Using OVERGRID to Create X-Rays

• Start OVERGRID with the surface grid file

• Click “GEN_X” under “Domain Connectivity”

10/6/2014

21

Using OVERGRID to Create X-Rays

• Enter X-ray spacing as “Image plane

spacing”

– Type <ENTER> to automatically

adjust box boundaries

• Adjust box boundaries if needed

– Ignore “add delta”

• Click “Make X-ray box”

• Click “GEN_X” to generate the X-rays

• Click “WRITE CURRENT” or “WRITE

ALL” to save the X-rays to a file

10/6/2014

22

X-Ray Number and Body ID

• X-rays are numbered sequentially and

will be referred to by number in the

OVERFLOW input

• Each X-ray is tied to a body, identified

by “Comp(onent) ID” number (so when

the body moves, the hole-cutting moves

with it)

– Body ID (Component ID) can be set here

– Body ID=n refers to the nth component

defined in the Config.xml file (discussed

later)

• A text-input utility xrayed (part of CGT)

allows manipulation of X-ray files

– Combining X-ray files

– Splitting files

– Duplicating X-rays

– Changing body IDs

10/6/2014

23

Using gen_x to Create X-rays

• gen_x is a text-input utility in Chimera Grid Tools (CGT)

• Documentation is included with CGT (excerpted here)

– Input files:

• PLOT3D surface grid file

• Input parameter file:

surface_grid_filename

1 ISOPT(1/2/3)

0.01 DS

0 DELTA

1 NCROPS

1 IDBODY

-0.1, 1.1, 0, 1.5, -1, 1 XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX

– Output files:

• X-ray file gen_x.xry

• Output messages

– Execution:

• gen_x < input_parameter_file > output_messages_file

• X-rays can be read into OVERGRID for viewing

(Ignore DELTA parameter)

10/6/2014

24

Example: Axisymmetric External Tank

• For 2D or axisymmetric geometries, X-rays only need to bound the center

(y=0) grid plane

– Create the surface grid to represent the geometry within ± the X-ray spacing of

y=0

– Set the X-ray bounding box y limits to ± the X-ray spacing

– Comparable gen_x input:

et.srf

1 ISOPT(1/2/3)

10 DS

0 DELTA

1 NCROPS

1 IDBODY

320,2180,-10,10,-200,200

10/6/2014

25

Example: 2D Airfoil

• For airfoils and wings, include a thin section of the C-grid wake with the

surface grid

– Use L=2 (or K=2) surface for finite thickness wake

– Allows X-ray to cut other grids out of refined wake region

Airfoil grid and X-ray, showing extension into wake

Resulting hole in off-body grids

10/6/2014

26

Notes and Comments

• “Duplicated” X-rays are useful in some cases

– For example when multiple bodies are different only in position

– Special format in X-ray file does not take additional space

– X-rays can be duplicated using xrayed utility

• Remember that when creating X-rays, surface grids for different bodies

have to be in different files. Resulting X-ray files then have to be merged

(again, using xrayed).

10/6/2014

27

Notes and Comments

• If a user-generated box grid is added, an X-ray must be generated to cut

off-body grids from the inside of the box

– A surface grid file must be created using interior surfaces of the box grid, for

example constant planes of J,K,L=8 and -8

Sample capsule plus wake box,

with X-rays for the wake box.

Capsule will cut a hole in the

wake box; wake box will cut a

hole in off-body grids.

10/6/2014

28

Automatic Off-Body Grid Generation

• Function of off-body grids

• Basic controls

• Matching near-body and off-body grid spacing

• Specifying additional refined regions

• Controlling the rate of grid coarsening

• Specifying symmetry planes, ground planes, etc.

• Far-field boundary conditions

• Examples

• Notes and comments

10/6/2014

29

Function of Off-Body Grids

• Level-1 (finest) off-body grids:

– Surround (all) near-body grids

– Fill user-specified regions

– Solution adaption (if used)

• Level-2 and coarser grids fill in to the far-field boundary

10/6/2014

30

Basic Controls

• Basic controls (input parameters in $GBRICK):

– DS – spacing for level-1 (finest) off-body grids

• This parameter is critical for (a) proper communication with near-body grids,

 (b) resolving off-body flow gradients, and (c) controlling overall number of grid points.

– DFAR – distance to (all) outer boundaries

– CHRLEN – characteristic body length (no longer used)

• Default is 1, use (major) dimension of body

– XNCEN,YNCEN,ZNCEN – center of off-body grid system

• Default is center of near-body grids

• Must be specified for moving body problems

10/6/2014

31

Matching Near-Body and Off-Body Grid Spacing

• How to pick DS (or, how far to grow near-body grids)?

– DS should match ΔS (outer boundary spacing of near-body grids)

– DS (and ΔS) should be sized to resolve off-body flow gradients

– Near-body grids should extend out about 10xDS from the body surface

10/6/2014

32

Off-Body Process Output

• Output indicates number of off-body grids generated for each level of

coarseness (level-1 is finest)

................. START BRICK

 Off-body grids generated with 2 fringe points.

 LEVEL 1: GENERATED 35 GRIDS

 LEVEL 2: GENERATED 44 GRIDS

 LEVEL 3: GENERATED 5 GRIDS

 LEVEL 4: GENERATED 5 GRIDS

 LEVEL 5: GENERATED 5 GRIDS

 LEVEL 6: GENERATED 5 GRIDS

 LEVEL 7: GENERATED 5 GRIDS

................... END BRICK

10/6/2014

33

Specifying Additional Refined Regions

• Additional regions of level-1 grids (input parameters in $BRKINP):

– NBRICK – number of user-specified proximity regions

• If NBRICK is positive, these regions add to geometry regions

• If NBRICK is negative, these regions replace geometry regions

– (XBRKMIN,XBRKMAX, YBRKMIN,YBRKMAX, ZBRKMIN,ZBRKMAX) –

min/max of proximity region

– IBDYTAG – proximity region will move with motion of the indicated body

• Example where you don’t want this, e.g., wakes

• Use IBDYTAG=0 for no body movement

10/6/2014

34

Controlling the Rate of Grid Coarsening

MINBUF=4 MINBUF=8

• Effect of MINBUF (in $GBRICK):

– Default MINBUF=4 gives minimum overlap between successively coarser off-

body grids

– Larger values give more gradual coarsening, but use more grid points

– 2-airfoil example:

• MINBUF=4 (if geometry were 3D, off-body grids would have 2 million points)

• MINBUF=8 (3D off-body grids would have 3 million points)

10/6/2014

35

Specifying Symmetry Planes, Ground Planes, etc.

• Special planes (input parameters in $GBRICK):

– Used to set a ground plane, symmetry plane, inflow plane, etc.

– I_XMIN=1 – use value of P_XMIN as off-body grid X(minimum)

– I_XMIN=0 – default is to use DFAR to set X (minimum)

– Same for I_XMAX, I_YMIN,I_YMAX, I_ZMIN,I_ZMAX, and P_XMAX,

P_YMIN,P_YMAX, P_ZMIN,P_ZMAX

Symmetry plane for helicopter fuselage:

I_YMIN=1, P_YMIN=0

Hyper-X supersonic inflow plane:

I_XMIN=1, P_XMIN=-20

10/6/2014

36

Far-Field Boundary Conditions

• Far-field boundary conditions (input parameters in $OMIGLB):

– IBXMIN – boundary condition type for off-body grid system X (minimum)

boundary

– Same for IBXMAX, IBYMIN,IBYMAX, IBZMIN,IBZMAX

– A limited number of boundary conditions are implemented:

• Inflow/outflow conditions: BC types 30,35,37,40,41,47,49

• 2D or axisymmetric condition (y only): BC types 21,22

• Axis condition (z only, and combined with axisymmetric in y): BC type 16

• Symmetry conditions: BC types 11,12,13,17

• Inviscid wall: BC type 1

– Default is free-stream/characteristic condition (BC type 47)

10/6/2014

37

Example 1: Helicopter Fuselage

• 100-inch long body, symmetry at y=0, far-field at 1000 inches

– Set off-body symmetry boundary condition with IBYMIN=17

– Make off-body grids start at y=0 by using I_YMIN, P_YMIN

$OMIGLB IBYMIN=17, … $END

$GBRICK

 DS=1, DFAR=1000,

 XNCEN=50, YNCEN=0, ZNCEN=0,

 I_YMIN=1, P_YMIN=0,

 $END

$BRKINP $END

10/6/2014

38

Example 2: Airfoil With Refined Shock Grid

• 2D airfoil, chord=1, far-field at 100 chords

– Use $BRKINP to add a refined level-1 region for shock

– Since IBDYTAG=1, this region is tied to motion of the airfoil

$OMIGLB IBYMIN=21, … $END

$GBRICK

 DS=0.01, DFAR=100,

 XNCEN=0.5, YNCEN=0, ZNCEN=0,

 $END

$BRKINP

 NBRICK=1,

 XBRKMIN=0.5, XBRKMAX=0.9,

 YBRKMIN=0, YBRKMAX=0,

 ZBRKMIN=0, ZBRKMAX=1,

 IBDYTAG=1,

 $END

10/6/2014

39

Example 3: Oscillating Airfoil

• Airfoil forced oscillation problem
– Use $BRKINP to make level-1 region big enough to capture expected body

motion, so that off-body grids will not need to be regenerated during moving-
body run

$OMIGLB IBYMIN=21, … $END

$GBRICK

 DS=0.01, DFAR=100,

 XNCEN=0.5, YNCEN=0, ZNCEN=0,

 $END

$BRKINP

 NBRICK= -1,

 XBRKMIN= -0.3, XBRKMAX= 1.5,

 YBRKMIN= 0, YBRKMAX= 0,

 ZBRKMIN= -0.8, ZBRKMAX= 0.8,

 IBDYTAG= 0,

 $END

Without

$BRKINP

With

$BRKINP

10/6/2014

40

Example 3: Oscillating Airfoil

• Airfoil forced oscillation problem
– Use $BRKINP to make level-1 region big enough to capture expected body

motion, so that off-body grids will not need to be regenerated during moving-
body run

$OMIGLB IBYMIN=21, … $END

$GBRICK

 DS=0.01, DFAR=100,

 XNCEN=0.5, YNCEN=0, ZNCEN=0,

 $END

$BRKINP

 NBRICK= -1,

 XBRKMIN= -0.3, XBRKMAX= 1.5,

 YBRKMIN= 0, YBRKMAX= 0,

 ZBRKMIN= -0.8, ZBRKMAX= 0.8,

 IBDYTAG= 0,

 $END

Without

$BRKINP

With

$BRKINP

10/6/2014

41

Notes and Comments

• OBGRIDS=FALSE – no off-body grids created

– For single-grid problems, or where background grids are already supplied

• Files created: brkset.save, brkset.restart

– Needed for moving body or solution adaption restarts to generate consistent off-

body grids and near-body refinement regions

• Residual history for off-body grids is combined into a single entry in

resid.out, turb.out, species.out

– Instead of one entry per grid level, there is one entry representing all levels of off-

body grids

– Entry contains L2 and L∞-norms of RHS and ΔQ

– Entry lists (x,y,z) instead of (j,k,l) location of L∞-norm (off-body grids only)

– Especially appropriate for moving body or solution adaption problems, where the

number of off-body grids changes every adapt cycle

10/6/2014

42

DCF: Hole Cutting and Grid Assembly

• Using X-rays to cut holes

• Choosing XDELTA

• Orphan points and donor quality

• Multiple fringe interpolation

• Viscous stencil repair

• Examples

• Notes and comments

10/6/2014

43

Using X-Rays to Cut Holes

• Specifying X-ray cutters (input parameters in multiple $XRINFO):

– IDXRAY – X-ray number

– IGXLIST – list of grids to be cut

• Special grid number “-1” refers to (all) off-body grids

– Or use IGXBEG,IGXEND – starting/ending grids to be cut

– XDELTA – offset of hole from body surface

• Example: $XRINFO IDXRAY=1, IGXLIST=-1, XDELTA=0.05 $END

– Use the first X-ray in xrays.in file, cut a hole in the off-body grids, 0.05 grid units

off the X-ray surface:

10/6/2014

44

Using X-Rays to Cut Holes

• Example: multi-element airfoil

$XRINFO IDXRAY=1, IGXLIST=-1, XDELTA=0.02 $END

$XRINFO IDXRAY=2, IGXLIST=-1, XDELTA=0.02 $END

$XRINFO IDXRAY=3, IGXLIST=-1, XDELTA=0.02 $END

– Slat, main, and flap X-rays (X-rays 1,2,3) cut holes in off-body grids

$XRINFO IDXRAY=1, IGXLIST=2, XDELTA=0.005 $END

– Slat X-ray cuts hole in main grid (grid 2)

$XRINFO IDXRAY=2, IGXLIST=1,3, XDELTA=0.005 $END

– Main X-ray cuts hole in slat and flap grids (grids 1,3)

$XRINFO IDXRAY=3, IGXLIST=2, XDELTA=0.005 $END

– Flap X-ray cuts hole in main grid (grid 2)

10/6/2014

45

Choosing XDELTA

• Holes should be cut to keep coarser grids out of high-gradient regions

(such as boundary layers)

• Holes should be cut so that grids have similar resolution in overlap regions,

and have sufficient overlap for interpolation of boundary data

• When cutting holes in off-body grids, choose XDELTA to be 5 times DS, in

from the outer boundary of the near-body grids, or XDELTA = S – 5xDS

– This is often about half the distance to the surface

• When cutting holes in nearby bodies, XDELTA must be less than half the

expected minimum distance between the bodies to avoid orphan points

– Can use different values for different cutters

10/6/2014

46

Orphan Points and Donor Quality

• Some overset grid definitions (thanks to Ralph Noack):

– Blanked-out points – points inside bodies or holes, where the solution is not

computed or is ignored

– Fringe points – inter-grid boundary points where solution values are obtained

via interpolation from another grid

– Donor points – points contributing to interpolation stencils

– Orphan points – fringe points without valid donors; resulting from hole cutting

failure (no possible donor) or only poor quality donors are available (insufficient

overlap)

• Donor stencil quality (input parameter in $DCFGLB):

– “Quality” of the donor stencil refers to how much of the interpolated information

has to come from donor points that are interior to the flow solution, i.e., not

fringe points themselves

– DQUAL=1 – donor stencils must consist of only field points (default)

– DQUAL=0 – stencils which include all fringe points may be accepted

• This is not a good idea—the simulation may simply pass boundary data back and forth

between grids

– DQUAL=0.1 is generally acceptable

10/6/2014

47

Multiple Fringe Interpolation

• Single/double/triple fringe refers to the number of layers of interpolated

points at overlapped grid boundaries. These are analogous to ghost points.

– For single fringe interpolation, the flow solver must revert to lower-order

differencing at the boundaries

– Double fringe interpolation supports 5-point stencil differencing (up to FSO=3)

– Triple fringe interpolation supports 7-point stencil differencing (up to FSO=5)

• Appropriate number of fringe points is always highly recommended,

even though the code will run fewer fringe points

• Input parameter in $OMIGLB:

– LFRINGE=2 – double fringe; any double fringe points that are orphan points are

“repaired,” i.e., changed back to field points (default)

– LFRINGE=-2 – double fringe; do not revert orphan points to field points

Single fringe Double fringe

10/6/2014

48

Triple (and Higher) Fringe Interpolation

• Higher-order schemes in OVERFLOW need more than double fringe

– 4th-order central, 5th-order WENO schemes need LFRINGE=3

– 6th-order central needs LFRINGE=4

– Default LFRINGE is based on numerical scheme

– LFRINGE can be changed whenever grid connectivity is recomputed (DCF

process)

• Off-body grids need more overlap as well

– Use OFRINGE in $GBRICK to specify number of fringe points for off-body grids

– Default OFRINGE is based on numerical scheme

– But, OFRINGE cannot be changed without regenerating off-body grids

– If you plan to use a higher-order scheme later, set OFRINGE now

• Orphan points cause fringe layers to degrade gradually

– Triple fringe will locally change to double fringe, then to single fringe until

orphans are resolved or converted to field points

10/6/2014

49

Viscous Stencil Repair

• Viscous stencil repair (input parameters in $DCFGLB):

– MORFAN – enable/disable viscous stencil repair (1/0)

– NORFAN – number of points above a viscous wall subject to viscous stencil

repair

– Viscous stencil repair is needed to handle bad interpolations when overlapping

surface grids lie on the same curved surface. If not corrected, this can result in

orphan points (convex surfaces) or interpolations too high in the boundary layer

(concave surfaces).

– WARNING: Interpolation stencils for boundary points within NORFAN points of a

viscous surface will be modified, using the assumption that all viscous walls

have the same grid distribution in the normal direction. QUALITY OF

REPAIRED STENCILS IS NOT CHECKED.

– A better scheme is needed!

10/6/2014

50

DCF Output

• Output from DCF process indicates the number of multiple fringe and

viscous stencils repaired, and the final number of orphans

............... START DCFCRT

 WARNING: USING VISCOUS STENCIL REPAIR WITHIN 6 POINTS OF A WALL.

 Interpolation stencils for boundary points within NORFAN points of a

 viscous surface will modified, using the assumption that all viscous

 walls have the same grid distribution in the normal direction.

 WARNING: QUALITY OF REPAIRED STENCILS IS NOT CHECKED.

 WARNING: 278 viscous stencils/orphans repaired in DCFCRT

 NO orphan points found in DCFCRT

 ORPHAN POINT SUMMARY:

 *Numbers are approximate due to grid splitting.

 Points in overlap region may be counted twice.

 Initial Visc Stencils Visc Orphans Multi-Fringe Final

 Grid Orphans Repaired Repaired Orphs Repaired Orphans

 1* 0 214 0 0 0

 2* 36 28 36 0 0

............... END DCFCRT

10/6/2014

51

Example 1

• Helicopter fuselage

$OMIGLB LFRINGE=2, … $END

$DCFGLB DQUAL=0.3, MORFAN=1, NORFAN=6, $END

$XRINFO IDXRAY=1, IGXLIST=-1, XDELTA=0.035, $END

10/6/2014

52

Example 2

• Airfoil drop

– For bodies that are very close to each other, very small values of XDELTA may

be needed

$OMIGLB LFRINGE=2, … $END

$DCFGLB DQUAL=0.3, $END

$XRINFO IDXRAY=1, IGXLIST=2,-1, XDELTA=0.04, $END

$XRINFO IDXRAY=2, IGXLIST=1,-1, XDELTA=0.04, $END

$OMIGLB LFRINGE=2, … $END

$DCFGLB DQUAL=0.3, $END

$XRINFO IDXRAY=1, IGXLIST=-1, XDELTA=0.04, $END

$XRINFO IDXRAY=2, IGXLIST=-1, XDELTA=0.04, $END

$XRINFO IDXRAY=1, IGXLIST=2, XDELTA=0.0, $END

$XRINFO IDXRAY=2, IGXLIST=1, XDELTA=0.0, $END

10/6/2014

53

Notes and Comments

• It is OK to have “some” orphan points

– But you should understand why, and where they are in the grid system

– Be careful of compromising grid quality because you don’t want to refine the off-

body grids, or don’t want to fix the near-body grids

• Orphan points become much harder to control in moving body problems

– Have to anticipate grid movement

• OVERFLOW “fills” orphan points (and all hole points) with average of

neighboring point values

• Input parameter IRUN in $OMIGLB allows test run of DCF:

– IRUN=1 – just do off-body grid generation (write x.save file)

– IRUN=2 – do off-body grid generation and DCF (write x.save)

– IRUN=0 – do a complete run, including flow solver

10/6/2014

54

Data Surface Grids

• Can be used to extract acoustic data surfaces, velocity profiles,

pressure tap locations, 2D slices, etc.

• Any “1D” or “2D” (mx1x1 or mxnx1) grid in the grid.in file will be

treated by DCF as a “data surface grid”

– Flow solution at all points will be interpolated from other grids

– Grid and solution will be saved in usual files (x.save, q.save)

– Can also write these out explicitly using $SPLITM

10/6/2014

55

OVERFLOW-D Mode With Grid Motion

• General moving body process

• Off-body grid adaption to geometry

• GMP files Config.xml and Scenario.xml

• Non-dimensionalization of dynamics quantities

• Time step specification

• Simulating collisions

• Output information for moving body problems

• Visualizing body motion in OVERGRID

• Some references

10/6/2014

56

General Moving Body Process

• General process (input parameters in $OMIGLB):

– DYNMCS=.TRUE. – enable body dynamics (default is FALSE)

– I6DOF=2 – Prescribed and/or 6-DOF motion for different components.

Specified via the GMP interface (Config.xml and Scenario.xml files) ($SIXINP

is ignored). This is the recommended (and supported) option for moving

body problems.

• I6DOF=1 – 6-DOF body motion, specified via $SIXINP namelist input.

• I6DOF=0 – User-specified motion, controlled by user-supplied USER6 subroutine.

– NADAPT – number of steps between adaption (regeneration) of the grid system

• NADAPT=-n – (off-body) grids adapt to geometry only

• NADAPT=0 – grids will not be regenerated during solution process

• NADAPT=n – grids adapt to geometry and flow solution (see next section)

10/6/2014

57

General Moving Body Process

• DCF (hole-cutting and interpolation stencil-finding) is done every step

– Want interpolation stencils to change less than one cell per step for time

accuracy

– Estimate maximum velocity of fringe points and compare to donor grid cell size

– This sets maximum desired physical time step

• Look at a simple example:

– We have level-1 boxes

– We have a near-body grid inside the boxes

– The body is moving, the boxes are not

• What happens in OVERFLOW?

– Body motion is computed

– Body is moved

– DCF is performed

– Flow solution is advanced

10/6/2014

58

Off-Body Grid Adaption to Geometry

• As body moves, near-body grid gets close to the edge of the level-1 boxes

• Off-body grids must be regenerated, and the flow solution transferred

(interpolated) to the new off-body grids

• NADAPT=-n gives the number of time steps between off-body grid

adaption

– Usually every 20-50 steps (based on time step DTPHYS and MINBUF)

• Check this by running sample cases

– In some cases we can avoid this by creating a larger level-1 grid (e.g., for

pitching airfoil problem)

10/6/2014

59

Geometry Manipulation Protocol Files:

Config.xml

• Defines body (component) names and the associated grids

• Specifies any initial body transforms to assemble components into their

starting positions

• Components and their transforms can be defined hierarchically

• Example:
<?xml version=‘1.0’ encoding=‘utf-8’?>

<Configuration AngleUnit=“degree”>

 <Component Name=“wing” Type=“struc”>

 <Data> Grid List=1-5 </Data>

 </Component>

 <Component Name=“aileron” Parent=“wing” Type=“struc”>

 <Data> Grid List=6,7 </Data>

 <Transform>

 <Rotate Center=“0.7,0,0” Axis=“0,-1,0” Angle=“10”/>

 </Transform>

 </Component>

</Configuration>

10/6/2014

60

GMP Files: Scenario.xml

• Prescribed motion: specify

– Start time and duration

– Translation and rotation rates

• Example (prescribed motion):
<?xml version=‘1.0’ encoding=‘utf-8’?>

<Scenario Name=“Forced Oscillation” AngleUnit=“degree”>

 <Prescribed Component=“aileron” Start=“0”, Duration=“0”>

 <Rotate Center=“0.7,0,0” Axis=“0,-1,0”

 Speed=“20.*2.*pi/100.*cos(2.*pi/100.*t+pi/2.)”/>

 </Prescribed>

</Scenario>

10/6/2014

61

GMP Files: Scenario.xml

• 6-DOF motion: specify

– Start time and duration

– Component inertial properties

– Applied forces

– Motion constraints

• Example (constrained 6-DOF motion):
<?xml version=‘1.0’ encoding=‘utf-8’?>

<Scenario Name=“Constrained Motion” AngleUnit=“degree”>

 <Aero6dof Component=“aileron” Start=“0”, Duration=“0”>

 <InertialProperties Mass=“1.0” CenterOfMass=“0.7,0,0”

 PrincipalMomentsOfInertia=“0,2,0”/>

 <Constraint Rotate=“1,0,1” Frame=“body” Start=“0”/>

 <Constraint Translate=“1,1,1” Frame=“body” Start=“0”/>

 </Aero6dof>

</Scenario>

10/6/2014

62

GMP Files: Config.xml and Scenario.xml

• For 6-DOF problems, GMP component names must match

component names in mixsur.inp (force and moment calculation)

• GMP files can be created in a text editor or using OVERGRID

– Be careful that the motion illustrated in OVERGRID is the same as that

in OVERFLOW (should be OK with CGT 2.1)

• Some GMP capabilities do not work in OVERFLOW:

– Moments of inertia do not change with moving parts

10/6/2014

63

Non-Dimensionalization of Dynamics Quantities

• This is critical!

• Non-dimensionalizations in the flow solver are easy (free-stream

density ρ*∞=1, free-stream speed-of-sound c*∞=1)

• Non-dimensionalizations for all dynamics and time-accurate

information are based on Vref rather than c∞

– Vref is defined as Vref=REFMACH*c∞

– Vref is the same as V∞ if REFMACH is not explicitly specified in

$FLOINP

• REFMACH defaults to FSMACH

• REFMACH may be different from FSMACH, for example for hover

problems (FSMACH=0)

– This includes DTPHYS; all quantities in GMP files; and output forces

and moments, velocities and angular rates

– Some quantities can be very large (or small)

10/6/2014

64

Non-Dimensionalization of Dynamics Quantities

• Non-dimensionalizations of dynamic quanities are thus based on

– Length: L=1 grid unit

– Time: L/Vref

– Mass: ρ∞L3

• Indicating non-dimensional quantities with a *:

– Length: len* = len / L

– Mass: m* = m / (ρ∞L3)

– Velocity: V* = V / Vref

– Time: t* = t (Vref/L)

– Acceleration: a* = a (L/Vref
2)

– Force: F* = F / (ρ∞Vref
2L2)

– Moment of inertia: I* = I / (ρ∞L5)

– Angular velocity: ω* = ω (L/Vref)

– Moment: M* = M / (ρ∞Vref
2L3)

10/6/2014

65

Non-Dimensionalization Example: Airfoil Drop

• Assume standard sea-level conditions:

– ρ∞ = 0.002378 slug/ft3

– c∞ = 1117 ft/sec

– Gravity = 32.2 ft/sec2

• Pick airfoil properties:

– chord = 1 ft

– weight = 30 lb (heavy!)

• Flow conditions:

– Mach = 0.2

– Re/chord = 1 million

• From these we have:

dimensional non-dimensional

L = 1 ft L* = 1 (grid is in chords)

Vref = 223.4 ft/sec Vref* = 1

g = 32.2 ft/sec2 g* = 645x10-6

Wt = 30 lb Wt* = 0.2528

mass = 0.9317 slug mass* = 392

Iyy = 0.05054 slug-ft2 Iyy* = 21.25

• And pick (so that 400 steps is 0.1 sec):

Δt = 0.00025 sec Δt* = 0.05585

10/6/2014

66

Non-Dimensionalization Example:

Apollo Ballistic Range Model
• Ballistic range model properties:

– diameter = 63 mm

– mass = 575.9 g

– (Ixx, Iyy, Izz) = (0.1833, 0.1761, 0.1761)x106 g-mm2

• Assume standard sea-level conditions:

– ρ∞ = 1.226 g/mm3

– c∞ = 0.3405x106 mm/sec

– Gravity = 9807 mm/sec2

– μ∞ = 1.781 g/mm-sec

• Flow conditions:

– Mach = 2.5

– Re/mm = 58,610/mm

• From these we have:

dimensional non-dimensional

L = 1 mm L* = 1 (grid is in mm)

Vref = 0.8512x106 mm/sec Vref* = 1

g = 9807 mm/sec2 g* = 13.53x10-9

mass = 575.9 g mass* = 469.7x106

Ixx = 0.1833x106 g-mm2 Ixx* = 149.5x109

Iyy = Izz = 0. 1761x106 g-mm2 Iyy* = Izz* = 143.6x109

10/6/2014

67

GMP Example: Capsule Forced Oscillation

• Config.xml file is common to forced oscillation, free oscillation, and
ballistic range (6-DOF) simulation

– Grids 1-3 are the capsule, grid 4 is the wake box

– 4 deg initial angle

– Capsule CG is at (21,0,0)

<?xml version=‘1.0’ encoding=‘utf-8’?>

<Configuration AngleUnit=“degree”>

 <Component Name=“Capsule” Type=“struc”>

 <Data> Grid List=1-3 </Data>

 <Transform>

 <Rotate Center=“21.0,0,0” Axis=“0,1,0” Angle=“4.0”/>

 </Transform>

 </Component>

 <Component Name=“Box” Type=“struc”>

 <Data> Grid List=4 </Data>

 <Transform>

 <Rotate Center=“21.0,0,0” Axis=“0,1,0” Angle=“0.0”/>

 </Transform>

 </Component>

</Configuration>

10/6/2014

68

GMP Example: Capsule Forced Oscillation

• Scenario.xml file for forced oscillation

– Time period for 1 oscillation is 20100 (non-dimensionalized)

<?xml version=‘1.0’ encoding=‘utf-8’?>

<Scenario Name=“Forced Oscillation” AngleUnit=“degree”>

 <Prescribed Component=“Capsule” Start=“0” >

 <Rotate Center=“21.0,0,0” Axis=“0,1,0”

 Speed=“4.*2.*pi/20100.*cos(2.*pi/20100.*t+pi/2.)”

 Frame=“parent” />

 </Prescribed>

</Scenario>

10/6/2014

69

GMP Example: Capsule Free Oscillation

• Scenario.xml file for free oscillation

– Capsule inertial properties

– Constraints: only allow rotation about y

<?xml version=‘1.0’ encoding=‘utf-8’?>

<Scenario Name=“Free Oscillation” Gravity=“0,0,-13.53e-9”

 AngleUnit=“degree”>

 <Aero6dof Component=“Capsule” Start=“0”>

 <InertialProperties Mass=“469.7e6” CenterOfMass=“21.0,0,0”

 PrincipalMomentsOfInertia=“149.5e9, 143.6e9, 143.6e9”

 <PrincipalAxesOrientation Axis=“1,0,0” Angle=“0”/>

 </InertialProperties>

 <Constraint Start=“0” Translate=“1,1,1” Rotate=“1,0,1”/>

 </Aero6dof>

</Scenario>

10/6/2014

70

GMP Example: Capsule Ballistic Range Shot

• Scenario.xml file for ballistic range simulation

– Capsule inertial properties

– Box “flies” with capsule, but no rotations allowed

– In mixsur.inp, “Box” component is defined to be the same as “Capsule”
<?xml version=‘1.0’ encoding=‘utf-8’?>

<Scenario Name=“Ballistic Range” Gravity=“0,0,-13.53e-9”

 AngleUnit=“degree”>

 <Aero6dof Component=“Capsule” Start=“0”>

 <InertialProperties Mass=“469.7e6” CenterOfMass=“21.0,0,0”

 PrincipalMomentsOfInertia=“149.5e9, 143.6e9, 143.6e9”>

 <PrincipalAxesOrientation Axis=“1,0,0” Angle=“0”/>

 </InertialProperties>

</Aero6dof>

<Aero6dof Component=“Box” Start=“0”>

 <InertialProperties Mass=“469.7e6” CenterOfMass=“21.0,0,0”

 PrincipalMomentsOfInertia=“149.5e9, 143.6e9, 143.6e9”>

 <PrincipalAxesOrientation Axis=“1,0,0” Angle=“0”/>

 </InertialProperties>

 <Constraint Rotate=“1,1,1” Start=“0” Frame=“body” />

 </Aero6dof>

</Scenario>

10/6/2014

71

Time-Step Specification for Time-Accurate

Simulations

• Dual time-stepping (input parameters in $GLOBAL):

– DTPHYS – physical time-step (non-dimensionalized by Vref)

– TPHYS – to reset simulation time, e.g., TPHYS=0 when starting

dynamics

– FSONWT – selection of multi-step time-advance scheme

• 1—BDF1 (1st-order)

• 2—BDF2 (2nd-order) (default)

• 2.5—BDF2OPT (2nd-order)

– NDIRK – selection of multi-stage time-advance scheme

• 0—Default (Euler implicit BDF1, BDF2, BDF2OPT based on FSONWT)

• 1—Euler explicit (1-stage, 1st-order)

• 2—Euler implicit BDF1 or BDF2 (1-stage, 1st- or 2nd-order)

• 3—RK3 explicit (3-stage, 3rd-order)

• 4—RK4 explicit (4-stage, 4th-order)

• 5—ESDIRK3 implicit (3-stage, 3rd-order)

• 6—ESDIRK4 implicit (5-stage, 4th-order)

10/6/2014

72

Time Step Specification for Time-Accurate

Simulations

• Dual time-stepping (input parameters in $GLOBAL):

– NITNWT – (maximum) number of Newton/dual subiterations

• 3 for simplest problems (“rough” time-accuracy)

• 10-20 for general problems

• 40+ for difficult problems

• Affected by overset grid boundaries (explicit boundaries slow information

transfer)

• Affected by boundary conditions (like C-grid wakes)

– ORDNWT – order of convergence for early cutoff of subiterations

• >0 – L∞-norm(RHS) convergence over first subiteration

• <0 – L∞-norm(RHS) convergence over temporal error estimate

• =0 – do not limit subiterations (default)

10/6/2014

73

Newton/Dual Subiteration

• Subiteration is used for several functions:

– Drives out left-hand side factorization error

– Converges explicit boundary conditions

– Converges unsteady simulation to the next physical time step

• Choose physical time step DTPHYS

– For dual time-stepping, also choose local time-stepping (ITIME, DT, CFLMIN,

CFLMAX) and multigrid

– For Newton subiteration, local time-step is the same as DTPHYS (set ITIME=0)

– Goal is to converge subiterations at least 2 orders of magnitude (ad hoc rule)

• Subiteration convergence can be improved by increasing NITNWT and/or

decreasing DTPHYS

– Reducing DTPHYS also improves physical time-accuracy

• Generally, choose DTPHYS:

– To resolve physical scales (at least 100-200 steps per cycle)

– To have sufficiently resolved body motion for accurate DCF

– To have adequate drop in subiteration residual

10/6/2014

74

Converging Newton/Dual Subiterations

• In residual history files (resid.out, etc.) there is one entry (for each grid, or

off-body grids) per subiteration

• First subiteration right-hand side (RHS) residual represents the unsteady

forcing function

– If this is decreasing (converging), the flow is becoming more steady

• The drop in RHS residual from first to last subiteration represents the

numerical accuracy of computing the unsteady flow

– This should be at least 2 orders-of-magnitude (unless the flow is steady)

– Try using ORDNWT=2 to do this

• If selected grids are not converging as well as others, try setting ITER=2 for

those grids

• A 2-order-of-magnitude drop indicates that the time advance is numerically

converged; it does not guarantee that the physical time-step is small

enough to resolve physical processes

• Use OVERPLOT from CGT to plot resid.out –type files, as well as

subiteration convergence

10/6/2014

75

Converging Newton/Dual Subiterations

10/6/2014

76

Simulating Collisions

• Contact between bodies is detected by using X-ray hole-cutting applied to

surface grids of other bodies

• Contact detection is enabled (per body) by adding grid “0” to IGXLIST in X-

ray cutter(s)

• Example: airfoil drop

$XRINFO IDXRAY=1, IGXLIST=-1, XDELTA=0.04, $END

$XRINFO IDXRAY=2, IGXLIST=-1, XDELTA=0.04, $END

$XRINFO IDXRAY=1, IGXLIST=2,0, XDELTA=0.0, $END

$XRINFO IDXRAY=2, IGXLIST=1,0, XDELTA=0.0, $END

• Accurate geometric representation of collisions may require much finer X-

rays than hole-cutting

– To keep DCF process from becoming very slow, can make collision X-rays

separate from DCF X-rays

• R_COEF in $OMIGLB sets (global) coefficient of restitution

• Time of contact is accurate only to within DTPHYS

10/6/2014

77

Collision Example: Airfoil Drop

• Two collisions

• Off-body grids follow

airfoil

• Airfoil remains inside

level-1 grid (NADAPT

is OK)

10/6/2014

78

Output Information for Moving Body Simulations

• Input parameters in $GLOBAL:

– NSAVE – grid system, flow solution, and 6-DOF restart information is saved

every NSAVE steps, as x.step#, q.step#, sixdof.step#

– NFOMO – force and moment coefficients are written to fomoco.out every

NFOMO steps (automatically set to 1 for 6-DOF simulations)

• Namelist $SPLITM: write subsets of grid and solution every n steps (similar

to CGT utilities SPLITMX, SPLITMQ)

• XFILE,QFILE,QAVGFILE – specify base names for grid, solution, and/or Q-

average data (if blank, don’t write); step# will be appended to base name

• NSTART,NSTOP – start/stop step numbers for writing output files (use -1 for

“last”)

• IPRECIS – output file precision (0—default,1—single, 2—double)

• IG(subset#) – subset grid number; use IG()=-1 for cut of all off-body grids

• JS,JE,JI,KS,KE,KI,LS,LE,LI(subset#) – subset ranges and increments

• CUT(subset#),VALUE(subset#) – off-body grid cut type (“x”, “y”, or “z”) and

corresponding x, y, or z value

• Can have multiple $SPLITM namelists for multiple files

10/6/2014

79

Output Information for Moving Body Simulations

• History files:

– fomoco.out – force and moment coefficients per component, per step (same as

for static problems, except moment reference center moves with body)

– animate.out – body ID, physical time, body position and orientation (quaternion

notation), velocity and rotation rates, aero forces and moments (not coefficients)

– contact.out – lists step #, body IDs, contact point and normal vector, reaction

impulse, and linear and angular velocity changes (this is more for debugging

collisions)

– Note that OVERRUN script concatenates these files into

basename.{fomoco,animate,contact}

• Use OVERPLOT from CGT to plot fomoco.out, animate.out –type files

10/6/2014

80

Sample Trajectory Plot in OVERPLOT

10/6/2014

81

Visualizing Body Motion in OVERGRID

• Prescribed motion can be visualized in OVERGRID by reading in (surface

grids or) grid.in, Config.xml and Scenario.xml

– Start OVERGRID with surface grids or grid.in

– Click “COMPONENTS”

– On COMPONENTS menu,

• Click Read “Config” (“OK”)

• Click Read “Scenario” (“OK”)

10/6/2014

82

Visualizing Body Motion in OVERGRID

• Menu shows information on each component

– Component names and hierarchy

– Initial transforms from Config.xml

– Prescribed motions from Scenario.xml

• Enter animation information

– Start/end time and number of steps

– Click “PLAY”

10/6/2014

83

Visualizing Body Motion in OVERGRID

• For visualizing 6-DOF motion (after the OVERFLOW simulation is

complete) read in basename.animate:

– Click “Add New” motion command

– Click “Table”

– Type in animate filename and click “Read”

– Click “PLAY”

10/6/2014

84

Some References

• GMP interface

– S.M. Murman, W.M. Chan, M.J. Aftosmis, and R.L. Meakin, “An Interface for Specifying

Rigid-Body Motions for CFD Applications,” AIAA 2003-1237, Jan. 2003

• Solution adaption

– P.G. Buning and T.H. Pulliam, “Cartesian Off-body Grid Adaption for Viscous Time-Accurate

Flow Simulations,” AIAA 2011-3693, June 2011

– R.L. Meakin, “An Efficient Means of Adaptive Refinement Within Systems of Overset Grids,”

AIAA 95-1722, June 1995

– R.L. Meakin, “On Adaptive Refinement and Overset Structured Grids,” AIAA 97-1858, June

1997

• Hole cutting using X-rays

– R.L. Meakin, “Object X-Rays for Cutting Holes in Composite Overset Structured Meshes,”

AIAA 2001-2537, June 2001

• Off-body grid generation

– R.L. Meakin, “Automatic Off-Body Grid Generation for Domains of Arbitrary Size,” AIAA

2001-2536, June 2001

• Collision dynamics

– R.L. Meakin, “Multiple-Body Proximate-Flight Simulation Methods,” AIAA 2005-4621, June

2005

10/6/2014

85

Solution Adaption for

Near-Body and Off-Body Grids

• Allows off-body refinement grids that are finer than level-1, near-body

refinement grids that are finer than original grid

• Refinement levels are labelled -1, -2, etc., and have grid spacing of DS/2,

DS/4, etc. (off-body), and ½, ¼, etc. of original spacing (near-body)

• Can be used with or without grid motion, for steady-state or time-accurate

simulations

400 steps, no adaption Additional 100 steps,
adapting every 10 steps

10/6/2014

86

Solution Adaption for Near- and Off-Body Grids

• Original and finer grids are

cut by X-rays

• Refinement grids blank out

regions in coarser level grids

10/6/2014

87

Input Parameters

• Basic control parameters (in $OMIGLB)

– NADAPT=n – adapt solution every n steps

• 0—do not adapt

• >0—adapt to geometry and sensor function

• <0—adapt to geometry only

– NREFINE=m – allow up to m levels of refinement

– NBREFINE=k – allow up to k levels of refinement for near-body grids

– ETYPE – sensor function for adaption

• 0—undivided 2nd-difference of Q variables (squared)

• 1—vorticity magnitude

• 2—undivided vorticity magnitude

– EREFINE/ECOARSEN – refine above/coarsen below these function

values

– SIGERR – shortcut method to set EREFINE and ECOARSEN

• EREFINE=(1/8)SIGERR, ECOARSEN=(1/8)SIGERR+2

10/6/2014

88

Airfoil Example: Effect of NREFINE

$OMIGLB NADAPT=10, NREFINE=0,

 ETYPE=0, SIGERR= 5, $END

• No grids finer than level-1

• Results in 84 grids and 185K points

$OMIGLB NADAPT=10, NREFINE=2,

 ETYPE=0, SIGERR= 5, $END

• Two levels of refinement

• Results in 342 grids and 754K points

10/6/2014

89

Input Parameters

• Parameters to restrict refinement regions (in $BRKINP)

– (XREFMIN,XREFMAX, YREFMIN,YREFMAX, ZREFMIN,ZREFMAX) –

min/max of region to limit grid refinement

– REFLVL=n – limit grid refinement level to ≥n for this region

– REFINOUT – grid refinement level is limited “INSIDE” or “OUTSIDE” the

specified region

– IBDYREF – limit region min/max box is tied to this Body ID for motion

transformations (0 for no motion)

• Example: no adaption outside specified region

 $OMIGLB NREFINE=2, ..., $END

 $BRKINP

 XREFMIN=-0.5, XREFMAX=1.5,

 ZREFMIN=-0.5, ZREFMAX=0.5,

 REFLVL=2, REFINOUT=‘OUTSIDE’,

 $END

10/6/2014

90

Notes and Comments

• For time-accurate simulations, adjust NADAPT to make sure that

adapted regions keep up with flow features and geometry

• Because the adaption can generate a large number of small grids,

time-accurate simulations may need (more) subiterations to ensure

good communication across grid boundaries

10/6/2014

91

Visualizing Moving and/or Adapting Grids and

Solutions using OVERGRID

• Moving or adapting (surface or 2D) grids can be

visualized in OVERGRID by using the SOLUTION

button (under “Viewers and Special Modules”)

– Start OVERGRID with x.save (or some grid)

– Click “SOLUTION”

– On SOLUTION menu,

• Click “Adaptive grids”

• Click “multiple”

• Adjust Root name, start, end

• Click “Read”

• Same for Q

• Select Function

• Click “PLAY” or step through frames

10/6/2014

92

10/6/2014

93

Compiling and Running OVERFLOW

• Unpacking and compiling

• Execution scripts

• Parallel processing and MPI load-balancing

• Hints and warnings

• Utility codes

• Test cases included with OVERFLOW

10/6/2014

94

Unpacking and Compiling

• Code comes as a gzipped tar file:

tar zxvf over2.2x.tar.gz

– Documentation is in over2.2x/doc

– Test cases are in over2.2x/test

– Tools are in over2.2x/tools/*

• Flow solver makefiles Makefile, Makefilempi

– Makefiles for tools, other utilities too

– Make.sys contains compiler options for a large variety of machines

• These are current suggested options only

• User’s responsibility to check and update

• Set for “big-endian” file I/O

– Sample makeall script to compile and install flow solver and tools: single and
double precision, MPI and non-MPI (e.g., makeall intel)

– For MPI compilation and running, .cshrc (or equivalent) must define environment

variable MPI_ROOT, for example

setenv MPI_ROOT /usr/local/mpich

10/6/2014

95

Execution Scripts

• Execution scripts overrun and overrunmpi

– Moves *.save files to *.restart before starting

– Highlights warnings and errors

– Creates a log file with the time/date, machine name, executable name,

and namelist input file name

– Concatenates output history files upon completion

– Expected namelist input file of the form basename.n.inp

overrun basename n

overrunmpi –n <ncpus> -t <threads> \

 –machinefile <hostfile> basename n

– I strongly recommend using these scripts, unless OVERFLOW is built

into another process

10/6/2014

96

Parallel Processing Options

• MPI (Message Passing Interface)

– Useful for PC clusters (how many depends on network)

– Good efficiency for shared memory machines with special MPI library

(SGI Altix)

– Parallelized on groups of grids (more on load-balancing later)

– 3 general flavors, OpenMPI, MPICH, LAM, available on the web

• OpenMP

– Useful for shared memory machines (8 CPUs or less)

– Useful for multi-core machines (but memory bandwidth may limit

performance)

– Parallelized on grid planes (doesn’t work for 2D or axisymmetric

problems)

• Hybrid parallelization (mix of MPI and OpenMP)

– Depends on system; MPI library must allow multiple threads

10/6/2014

97

MPI Load-Balancing

• Number of groups == number of processes in the MPI run

• Default load-balancing scheme:

– Based on equal distribution of grid points between processes (target

group size)

– Grids are split in half (with overlap added) until each grid is less than

half the target group size

– Grids are distributed, from largest to smallest, to current smallest group

– This scheme works quite well for grid systems with large numbers of

grids, and reasonably well for smaller systems

– Some pathological cases:

• 1 grid, 2 processes (grid is split into 4 instead of 2)

• 1 grid, 3 processes (grid is split into 8, load-balance is 3/8,3/8,2/8)

– Note that grid splitting introduces additional explicit boundaries, which

affects convergence behavior

10/6/2014

98

MPI Load-Balancing

• Controlling load-balancing (input parameters in $GROUPS and $GLOBAL):

– Use of the following inputs is rarely needed

– USEFLE=.TRUE. – use previous timing information in grdwghts.restart for

distributing grids to groups (FALSE – use default load-balancing scheme)

• Same as GRDWTS in $GLOBAL

– WGHTNB – weighting factor for near-body grids vs. off-body grids in default

load-balancing scheme (for example if viscous terms are turned off in off-body

grids)

– MAXNB – control splitting of near-body grids

• MAXNB=0 – use automatic splitting algorithm

• MAXNB>0 – specified (weighted) size limit

• MAXNB<0 – do not split grids

• Same as MAX_GRID_SIZE in $GLOBAL

– MAXGRD – control splitting of off-body grids (same options as MAXNB)

– IGSIZE – maximum group size during grid adaption (default is 10Mpts)

– Example: pathological case 1 (single grid (1 million points), 2 processes)

• $GROUPS MAXNB=600000, $END

• Grid will be split once, with both halves smaller than 600,000 pts

• Each process will get one piece

10/6/2014

99

Load-Balancing Diagnostics

• What grid splitting was done for load-balancing?

 Target (weighted) near-body grid size from grouping: 12862

 Checking near-body grids...

 Original number of near-body grids: 2

 Final number of near-body grids: 8

 Target (weighted) off-body grid size from grouping: 14752

 Checking off-body grids...

 Original number of off-body grids: 30

 Final number of off-body grids: 31

• Detailed list of split grids is also given in the output

10/6/2014

100

Load-Balancing Diagnostics

• What is the resulting grouping of grids?

Load balance will be based on grid size.

 Summary of work distribution for 4 groups:

 Group Kpts %load Grid list

 1 30 100 4 8 11 17 14 22 21 33 31 34

 39

 2 29 99 6 7 12 19 13 18 20 32 26 37

 3 30 100 1 9 3 23 24 28 30 35 38

 4 30 100 2 10 5 15 25 29 27 36 16

 Predicted parallel efficiency is 100%,

 based on a maximum of 30K grid points per group

 compared to an average of 30K points (weighted)

 Estimated parallel speedup is 4.0

10/6/2014

101

Load-Balancing Diagnostics

• What is the actual load-balance?

GROUP TIMING SUMMARY (Time each group spent in OVERFL)

 (*) STEP loop, (/) Chimera BC, (a) Adapt, (D) DCF(non-idle), (s) Grid,Q save

 0 25 50 75 100

 |-----------|------------|------------|-----------|

Group: 1 |**************************************///aaaaDDs 97%

Group: 2 |**************************************///aaaaDD 98%

Group: 3 |**************************************///aaaaDD 97%

Group: 4 |**************************************///aaaaDDs 99%

 Overall Measured Parallel Efficiency: 97.9%

10/6/2014

102

Load-Balancing – What to Look For

• Predicted parallel efficiency is low
Predicted parallel efficiency is 75%

– Not able to split or group grids effectively

– Some grids may not be split because of boundary conditions (axis, C-grid wake)

– Change the number of CPUs or manually split problem grid

• Histogram shows groups are not well balanced
Group: 1 |***///s 97%

Group: 2 |**********************/// 47%

Group: 3 |**********************/// 47%

Group: 4 |**********************///s 49%

– Group 1 is sharing the CPU with another process

– Eliminate other process or use a different CPU

• Large amount of time (~50%) spent exchanging Chimera BCs
Group: 1 |***********************/////////////////////////s 98%

Group: 2 |**********************////////////////////////// 96%

Group: 3 |**********************////////////////////////// 97%

Group: 4 |**********************//////////////////////////s 99%

– Network is too slow to permit efficient use of this many CPUs

– Use fewer CPUs

10/6/2014

103

Load-Balancing – What to Look For

• Measured parallel efficiency is less than predicted efficiency (5-10%)
Predicted parallel efficiency is 96%

 . . .

 0 25 50 75 100

 |-----------|------------|------------|-----------|

Group: 1 |*************************************//DDD 87%

Group: 2 |***********************************//DDD 85%

Group: 3 |**********************************//DDD 82%

Group: 4 |***********************************///DDD 84%

Group: 5 |***********************************//DDD 84%

 . . .

Group: 26 |***//DDD 99%

Group: 27 |**//DDD 97%

Group: 28 |**//DDD 98%

Group: 29 |***//DDD 96%

Group: 30 |***//DDD 96%

Group: 31 |***//DDD 97%

Group: 32 |***//DDD 97%

 Overall Measured Parallel Efficiency: 92.4%

– Set USEFLE=.TRUE. to use timing from previous run for load-balancing

– This may improve the performance SOME

10/6/2014

104

Hints and Warnings

• Unexplained errors while reading grid.in or q.restart file: check that all

input files are the correct precision, correct “endian”, and match the

executable being run

• Unexplained segmentation violation while running (Intel Linux machines?):

available stack memory has been exceeded, add “limit stacksize unlimited”

in .cshrc file

• “overflow killed” message on console: process ran out of memory, check

problem size

10/6/2014

105

Utility Codes

• Chimera Grid Tools (CGT version 2.1)

– Grid generation and manipulation utilities

– Scripting process for grid generation and assembly

– Force & moment integration: mixsur, overint, USURP

– Post-processing utilities, OVERPLOT

– OVERGRID user interface

– Primary author is William Chan (NASA Ames)

• Pegasus 5 (version 5.2)

– Overset grid joining code and utilities

– Primary author is Stuart Rogers (NASA Ames)

Both are available from NASA Ames Research Center

(https://www.nas.nasa.gov/cgi-bin/software/start.html)

https://www.nas.nasa.gov/cgi-bin/software/start.html
https://www.nas.nasa.gov/cgi-bin/software/start.html
https://www.nas.nasa.gov/cgi-bin/software/start.html

10/6/2014

106

Debug Options

• DEBUG=1 – turbulence information quantities

– Surface quantities: wall spacing, y+, turbulence index

– Field quantities: μt, vorticity, damping functions, k, ω, etc.

– Different quantities per model—see OVERFLOW 2.2 manual, Section 6.1

– Data output in “fake” q file q.turb

• DEBUG=2 – time step information

– Field quantities: Δt, J,K,L, and overall CFL#

– Data output in “fake” q file q.time

• DEBUG=3 – flow solver residual information

– Field quantities: flow solver residuals (right-hand side before time-step scaling)

– Data output in “fake” q file q.resid

• DEBUG=4 – solution adaption information

– Field quantities: sensor function, coarsen/refine marker array

– Data output in “fake” q file q.errest

10/6/2014

107

Apollo Static Aero, Mach 1.2
Mach number Turbulent eddy viscosity

Spalart-Allmaras

Baldwin-Barth

Laminar outside

boundary layer

Max=25000

Max=15000

Max=85

Turbulence model:

10/6/2014

108

Test Cases Included With OVERFLOW

• Simple 2D cases (steady flow, single grid):
– flat_plate, flat_plate_high_re

– flat_plate_wf (tests wall function skin friction)

– shear_layer

– driven_cavity_2d (low-Mach preconditioning test case)

– curved_wall_2d (tests turbulence model curvature corrections)

– 3gas (simple multiple species convection case)

• Transonic 2D or axisymmetric cases (steady flow, single grid):
– bump (axisymmetric bump, shock-induced separation)

– naca, naca4412, naca_ogrid

– et_axi, srb_axi

• Hypersonic 2D cases (steady flow, single grid):
– cylinder, cyl_holden (2D Mach 8,16 flow)

10/6/2014

109

Test Cases, Continued

• 2D multiple grids:
– af3_96 (multi-element airfoil)

– cascade

• 2D moving body cases:
– airfoil_drop_2d

– rotating_paddle_2d

– pitching_airfoil_2d

• Propulsion cases:
– nozzle (rocket nozzle inflow/outflow boundary conditions)

– eggers, seiner (axisymmetric plume flows)

– powered_nacelle (jet engine inflow/outflow boundary conditions)

– normal_jet_2d (simple jet-in-crossflow)

• Classical time-accurate cases:

– shock_tube

– vortex_convection, vortex_convection_HiO, lambVortex_convection

– stokes_1st_problem (impulsively started plate)

– oscillating_sphere (acoustic test case)

10/6/2014

110

Test Cases, Continued

• Subsonic/transonic 3D (steady, single grid):

– m2129_s_duct (S-duct inlet)

– rotating_disk (infinite rotating plate)

– onera_m6 (classic transonic wing test cases)

– inf_swept (infinite swept wing)

– ogive_cylinder

• Subsonic/transonic 3D (steady, multiple grid):

– wingbody (AGARD test case)

– bizjet (assembling and running a wing/body/pylon/nacelle)

– robin_sym (helicopter fuselage, illustrates some numerical problems)

• Off-body grid adaption cases:
– airfoil_adapt (new)

– normal_jet_adapt (simple jet-in-crossflow) (new)

10/6/2014

111

Questions?

